期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In situ confined vertical growth of Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)nanoarrays on rGO for an efficient oxygen evolution reaction 被引量:1
1
作者 Yang Mu xiaoyu pei +5 位作者 Yunfeng Zhao Xueying Dong Zongkui Kou Miao Cui Changgong Meng Yifu Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第4期351-360,共10页
Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silic... Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silicate hydroxide[Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)]is vertically grown on a reduced graphene oxide(rGO)support(CNS@rGO).This is developed as a low-cost and prospective OER catalyst.Compared to cobalt or nickel silicate hydroxide@rGO(CS@rGO and NS@rGO,respectively)nanoarrays,the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm^(-2).This value is higher than that of CS@rGO and NS@rGO.The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm^(-2),about 1.4 times that of the commercial RuO_(2)electrocatalyst.The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives.The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement,including a fast electron transfer pathway,short proton/electron diffusion distance,more active metal centers,as well as optimized dualatomic electron density.Taking advantage of interlay chemical regulation and the in-situ growth method,the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts. 展开更多
关键词 Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)@rGO Vertical grown nanoarrays Geometric and electronic structure regulation Metal-support interactions Oxygen evolution reaction
下载PDF
Patterns of presence-absence variants in Upland cotton 被引量:1
2
作者 Junfang Liu Xianliang Zhang +17 位作者 Lingling Dou Wei Li Xiaojian Zhou Yangai Liu xiaoyu pei Zhongying Ren Wensheng Zhang Huaizhu Li Wenbo Wang Changsong Zou Kunlun He Fei Zhang Wenyu Ma Haihong Shang Hongbin Li Daigang Yang Guanghui Xiao Xiongfeng Ma 《Science China(Life Sciences)》 SCIE CAS CSCD 2020年第10期1600-1603,共4页
Dear Editor,Sources of genetic variations in genomes include small-scale sources(such as single-nucleotide polymorphisms(SNPs),insertions/deletions(InDels),and simple sequence repeats and larger-scale structural varia... Dear Editor,Sources of genetic variations in genomes include small-scale sources(such as single-nucleotide polymorphisms(SNPs),insertions/deletions(InDels),and simple sequence repeats and larger-scale structural variations(mainly presence-absence variants(PAVs))and copy number variants).PAVs are sequences that are either inserted or missing in genomes in comparison with a reference sequence or genome.PAVs can have a much longer sequence than SNPs and InDels,as illustrated in the human genome(Conrad et al.,2010).PAVs are important genomic structural variations that can directly affect genomic structure and key functional genes in the genome(Kumar et al.,2007).Moreover,the use of PAVs for studying quantitative traits has been valuable(Lam et al.,2010). 展开更多
关键词 TRAITS SEQUENCE INSERTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部