El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement...El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.展开更多
During the recent four decades since 1980,a series of modern climate satellites were launched,allowing for the measurement and record-keeping of multiple climate parameters,especially over the polar regions where trad...During the recent four decades since 1980,a series of modern climate satellites were launched,allowing for the measurement and record-keeping of multiple climate parameters,especially over the polar regions where traditional observations are difficult to obtain.China has been actively engaging in polar expeditions.Many observations were conducted during this period,accompanied by improved Earth climate models,leading to a series of insightful understandings concerning Arctic and Antarctic climate changes.Here,we review the recent progress China has made concerning Arctic and Antarctic climate change research over the past decade.The Arctic temperature increase is much higher than the global-mean warming rate,associated with a rapid decline in sea ice,a phenomenon called the Arctic Amplification.The Antarctic climate changes showed a zonally asymmetric pattern over the past four decades,with most of the fastest changes occurring over West Antarctica and the Antarctic Peninsula.The Arctic and Antarctic climate changes were driven by anthropogenic greenhouse gas emissions and ozone loss,while tropical-polar teleconnections play important roles in driving the regional climate changes and extreme events over the polar regions.Polar climate changes may also feedback to the entire Earth climate system.The adjustment of the circulation in both the troposphere and the stratosphere contributed to the interactions between the polar climate changes and lower latitudes.Climate change has also driven rapid Arctic and Southern ocean acidification.Chinese researchers have made a series of advances in understanding these processes,as reviewed in this paper.展开更多
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma...In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.展开更多
Antarctic polynyas play an important role in regional atmosphere?ice?ocean interactions and are considered to help generate the global deep ocean conveyer belt.Polynyas therefore have a potential impact on the Earth’...Antarctic polynyas play an important role in regional atmosphere?ice?ocean interactions and are considered to help generate the global deep ocean conveyer belt.Polynyas therefore have a potential impact on the Earth’s climate in terms of the production of sea ice and high-salinity shelf water.In this study,we investigated the relationship between the area of the Terra Nova Bay polynya and the air temperature as well as the eastward and northward wind based on the ERA5 and ERAInterim reanalysis datasets and observations from automatic weather stations during the polar night.We examined the correlation between each factor and the polynya area under different temperature conditions.Previous studies have focused more on the effect of winds on the polynya,but the relationship between air temperature and the polynya area has not been fully investigated.Our study shows,eliminating the influence of winds,lower air temperature has a stronger positive correlation with the polynya area.The results show that the relationship between the polynya area and air temperature is more likely to be interactively influenced.As temperature drops,the relationship of the polynya area with air temperature becomes closer with increasing correlation coefficients.In the low temperature conditions,the correlation coefficients of the polynya area with air temperature are above 0.5,larger than that with the wind speed.展开更多
Our planet experienced a number of extreme climate events in 2022,including extreme summer heat in the northern hemisphere,droughts in China and Brazil,and floods in Pakistan,South Africa,and Australia.Persistent glob...Our planet experienced a number of extreme climate events in 2022,including extreme summer heat in the northern hemisphere,droughts in China and Brazil,and floods in Pakistan,South Africa,and Australia.Persistent global warming is believed to be the key factor in these extreme climate events,which were rare in past decades.Understanding the physical dynamics of regional climate change is essential if we are to reliably project such events in a warmer climate.展开更多
Antarctica is considered as an important component of the global climate system, not only because of its ability to drive global sea-level rise through ice melting [1], but also because of its stabilizing effect on gl...Antarctica is considered as an important component of the global climate system, not only because of its ability to drive global sea-level rise through ice melting [1], but also because of its stabilizing effect on global atmospheric energy balance/circulation [2].In recent years, Antarctica has experienced rapid climatic changes and frequent climate extremes, such as a rapid decrease in summer sea ice extent since 2016 [3] and the highest air temperature recorded at Esperanza station in the Antarctic Peninsula on 9February 2020 [4]. In this context, climate extremes in Antarctica have received increasing attention recently [4–7].展开更多
Smart contracts are increasingly used in financial innovation area.In view of smart contracts’legal effects,a study is implemented in this paper.First,Smart contracts appear as a set of computer codes,and carry the m...Smart contracts are increasingly used in financial innovation area.In view of smart contracts’legal effects,a study is implemented in this paper.First,Smart contracts appear as a set of computer codes,and carry the mutual consensus of the transaction parties and under the principle of freedom of contract form.Thus,smart contracts can be understood as a type of contractual written form in the hightech context.Then the agreement automatic enforcement was made by the five-element structure,and the traditional situation of enforcement uncertainty was avoided.The results show that it is necessary to examine whether the meaning of the machine matches the meaning of the party,and whether the machine meaning is in conformity with the legal provisions.Finally,the conclusion was drawn that the legal effect of smart contract can be clarified in response to the booming financial technology.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2018YFA0605703)the National Natural Science Foundation of China(Grant Nos.42176243,41976193 and 41676190)supported by National Natural Science Foundation of China(Grant No.41975079)。
文摘El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.
基金supported by the National Key Research and Development Program of China(2018YFA 0605703)the National Natural Science Foundation of China(No.41976193 and No.42176243)+8 种基金X.CHEN was supported by the National Key Research and Development Program of China(2019YFC1509100)the National Science Foundation of China(No.41825012)B.WU was supported by the Major Program of the National Natural Science Foundation of China(41790472)the National Key Basic Research Project of China(2019YFA0607002)the National Natural Science Foundation of China(41730959)X.CHENG was funded by the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021008)M.DING was supported by the National Natural Science Foundation of China(42122047 and 42105036)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(2021Y021 and 2021Z006)Q.SUN was supported by the National Key R&D Program of China(No.2022YFE0106300).
文摘During the recent four decades since 1980,a series of modern climate satellites were launched,allowing for the measurement and record-keeping of multiple climate parameters,especially over the polar regions where traditional observations are difficult to obtain.China has been actively engaging in polar expeditions.Many observations were conducted during this period,accompanied by improved Earth climate models,leading to a series of insightful understandings concerning Arctic and Antarctic climate changes.Here,we review the recent progress China has made concerning Arctic and Antarctic climate change research over the past decade.The Arctic temperature increase is much higher than the global-mean warming rate,associated with a rapid decline in sea ice,a phenomenon called the Arctic Amplification.The Antarctic climate changes showed a zonally asymmetric pattern over the past four decades,with most of the fastest changes occurring over West Antarctica and the Antarctic Peninsula.The Arctic and Antarctic climate changes were driven by anthropogenic greenhouse gas emissions and ozone loss,while tropical-polar teleconnections play important roles in driving the regional climate changes and extreme events over the polar regions.Polar climate changes may also feedback to the entire Earth climate system.The adjustment of the circulation in both the troposphere and the stratosphere contributed to the interactions between the polar climate changes and lower latitudes.Climate change has also driven rapid Arctic and Southern ocean acidification.Chinese researchers have made a series of advances in understanding these processes,as reviewed in this paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.41976193 and 42176243).
文摘In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.
基金the National Natural Science Foundation of China(Grant No.41830536,Grant No.41676190,and Grant No.41941009)the Fundamental Research Funds for the Central Universities(Grant No.12500-312231103)The authors thank the University of Bremen for providing the AMSR-E,AMSR-2 and SSMIS SIC data,as well as the University of Wisconsin-Madison Automatic Weather Station Program(NSF Grant No.ANT-1543305)。
文摘Antarctic polynyas play an important role in regional atmosphere?ice?ocean interactions and are considered to help generate the global deep ocean conveyer belt.Polynyas therefore have a potential impact on the Earth’s climate in terms of the production of sea ice and high-salinity shelf water.In this study,we investigated the relationship between the area of the Terra Nova Bay polynya and the air temperature as well as the eastward and northward wind based on the ERA5 and ERAInterim reanalysis datasets and observations from automatic weather stations during the polar night.We examined the correlation between each factor and the polynya area under different temperature conditions.Previous studies have focused more on the effect of winds on the polynya,but the relationship between air temperature and the polynya area has not been fully investigated.Our study shows,eliminating the influence of winds,lower air temperature has a stronger positive correlation with the polynya area.The results show that the relationship between the polynya area and air temperature is more likely to be interactively influenced.As temperature drops,the relationship of the polynya area with air temperature becomes closer with increasing correlation coefficients.In the low temperature conditions,the correlation coefficients of the polynya area with air temperature are above 0.5,larger than that with the wind speed.
基金supported by the National Key R&D Program of China(2019YFA0606703).
文摘Our planet experienced a number of extreme climate events in 2022,including extreme summer heat in the northern hemisphere,droughts in China and Brazil,and floods in Pakistan,South Africa,and Australia.Persistent global warming is believed to be the key factor in these extreme climate events,which were rare in past decades.Understanding the physical dynamics of regional climate change is essential if we are to reliably project such events in a warmer climate.
基金supported by the National Key Research and Development Program of China (2018YFA0605700)supported by the Joint Research Centre for Southern Hemisphere Oceans Research (CSHOR)between the Qingdao National Laboratory for Marine Science and Technology (QNLM)and the Commonwealth Scientific and Industrial Research Organisation (CSIRO)+10 种基金supported by the Australian Research Council Special Research Initiative for Securing Antarctica’s Environmental Future (SR200100005)supported by the National Natural Science Foundation of China (41876231)supported by the National Natural Science Foundation of China (42230405 and 41976006)the National Natural Science Foundation of China (41876008 and 41730534)supported by the National Natural Science Foundation of China (41830538)the Program of Impact and Response of Antarctic Seas to Climate Change (IRASCC 01-01-01A)supported by the National Key Research and Development Program of China (2020YFA0608801)the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021205)supported by the National Science Foundation (AGS-1934392)supported by the National Science Foundation (OCE-2048336)the International Partnership Program of Chinese Academy of Sciences (183311KYSB20200015)。
基金supported by the National Natural Science Foundation of China(42122047 and 42105036)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(2021Y021 and 2021Z006)。
文摘Antarctica is considered as an important component of the global climate system, not only because of its ability to drive global sea-level rise through ice melting [1], but also because of its stabilizing effect on global atmospheric energy balance/circulation [2].In recent years, Antarctica has experienced rapid climatic changes and frequent climate extremes, such as a rapid decrease in summer sea ice extent since 2016 [3] and the highest air temperature recorded at Esperanza station in the Antarctic Peninsula on 9February 2020 [4]. In this context, climate extremes in Antarctica have received increasing attention recently [4–7].
基金National Social Science Foundation of China(Grant No.19BFX120).
文摘Smart contracts are increasingly used in financial innovation area.In view of smart contracts’legal effects,a study is implemented in this paper.First,Smart contracts appear as a set of computer codes,and carry the mutual consensus of the transaction parties and under the principle of freedom of contract form.Thus,smart contracts can be understood as a type of contractual written form in the hightech context.Then the agreement automatic enforcement was made by the five-element structure,and the traditional situation of enforcement uncertainty was avoided.The results show that it is necessary to examine whether the meaning of the machine matches the meaning of the party,and whether the machine meaning is in conformity with the legal provisions.Finally,the conclusion was drawn that the legal effect of smart contract can be clarified in response to the booming financial technology.