The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassi...The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration.展开更多
The Songshugang deposit is a large Ta-Nb deposit in South China,with Ta-Nb mineralization associated genetically with the granite and pegmatite.A diversity of quartz from topaz-albite granite,quartz-mica pegmatite,qua...The Songshugang deposit is a large Ta-Nb deposit in South China,with Ta-Nb mineralization associated genetically with the granite and pegmatite.A diversity of quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite at Songshugang was studied by CL and LA-ICP-MS in order to constrain enrichment mechanisms of Nb and Ta and to find geochemical indicators of quartz for rare metal deposits.Cathodoluminescence image illuminates a canvas of complexity,the quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite,exhibits numerous dark CL streaks,patches,and a series of healed fractures.These textures suggest that the rocks were fractured because of deep crustal pressure,and underwent later hydrothermal metasomatism and quartz filling.The quartz from quartz-fluorite pegmatite present limited patches or fractures but distinct growth bands,indicating that the melt fluid composition during the formation of quartz at this stage varies greatly and is less aff ected by mechanical fragmentation.The LA-ICP-MS analysis of quartz shows that there is a positive correlation between Al and Li in the quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,to quartz-fluorite pegmatite,indicating that Al mainly enters the quartz lattice through charge compensation substitution mechanism with Li.However,our data deviate from the theoretical Li:Al mass ratio of~1:3.89 in quartz,indicating that there may be competition between H^(+)and Li in a water-rich magmatic environment.The quartz from topaz-albite granite is enriched in K and Na elements,and the quartz from quartz-fluorite pegmatite is enriched in fluorite with a low Ca content in quartz,further elucidating that these rocks were subjected to hydrothermal metasomatism.From topaz-albitite granite to quartz-fluorite pegmatite,Al,Li and Ge content and Al/Ti,Ge/Ti,Sb/Ti ratios in quartz gradually increased,but Ti content gradually decreased,reflecting the high evolution of magma,which can enrich rare metal elements.Based on the characteristics of quartz CL textures and trace elements in topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite,combined with the albitization and K-feldspathization of rocks,it is suggested that the Nb-Ta mineralization in Songshugang may be influenced by the combined action of magmatic crystallization differentiation and fluid metasomatism.By comparing the quartz in the Songshugang pluton with the quartz in the granite type and pegmatite type rare metal deposits recognized in the world,the Songshugang pegmatite share similarities with the LCT-type pegmatite.Combined with previous studies,the Ge/Ti>0.1 and Ti<10 ppm,as well as Al,Li,Ge,Sb,K,Na contents and Al/Ti,Sb/Ti ratios in quartz have the potential to be a powerful exploration marker for identifying granite-like pegmatitic Nb-Ta deposits in other places.展开更多
The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years.Generally,ratios of whole-rock trace elements,such as Sr/Y,(La/Yb)n and Ce/Y,are used to c...The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years.Generally,ratios of whole-rock trace elements,such as Sr/Y,(La/Yb)n and Ce/Y,are used to characterize crustal thicknesses.However,sometimes confusing results are obtained since there is no enough filtered data.Here,a state-of-the-art approach,based on a machine-learning algorithm,is proposed to predict crustal thickness using global major-and trace-element geochemical data of intermediate arc rocks and intraplate basalts,and their corresponding crustal thicknesses.After the validation processes,the root-mean-square error(RMSE)and the coefficient of determination(R2)score were used to evaluate the performance of the machine learning algorithm based on the learning dataset which has never been used during the training phase.The results demonstrate that the machine learning algorithm is more reliable in predicting crustal thickness than the conventional methods.The trained model predicts that the crustal thickness of the eastern North China Craton(ENCC)was-45 km from the Late Triassic to the Early Cretaceous,but-35 km from the Early Cretaceous,which corresponds to the paleo-elevation of 3.0±1.5 km at Early Mesozoic,and decease to the present-day elevation in the ENCC.The estimates are generally consistent with the previous studies on xenoliths from the lower crust and on the paleoenvironment of the coastal mountain of the ENCC,which indicates that the lower crust of the ENCC was delaminated abruptly at the Early Cretaceous.展开更多
The south Gangdese region is the site of subduction of the Neo-Tethys and subsequent continental col- lision. Compared with widespread Cretaceous and Cenozoic magmatism, Early-Middle Jurassic magmatic rocks and relate...The south Gangdese region is the site of subduction of the Neo-Tethys and subsequent continental col- lision. Compared with widespread Cretaceous and Cenozoic magmatism, Early-Middle Jurassic magmatic rocks and related deposits are rarely reported, Our work identified a 〉200 km long felsic rock belt asso- ciated with Cu mineralization in the south Gangdese region. We report here zircon U-Pb ages, zircon Ce4+/Ce3+ values, and mineral assemblages of two Cu mineralized intrusions within the belt. A horn- blende granite and a diorite porphyry were emplaced at 177.3Ma and 166.3Ma, respectively. Geological occurrence and magmatic hematite-magnetite-chalcopyrite intergrowths suggest that Cu mineralization formed coeval with Jurassic intrusions. Mineralized intrusions have high zircon Ce4+/ Ce3+ and EuN/EuN ratios, and hematite-magnetite intergrowths, suggesting their parent magmas were highly oxidized, Hornblende is common and primary fluid inclusions are found in titanite and apatite, indicating their parent magmas were water-saturated and exsotved volatile phases at early stage of rnag- matic evolution. Those magma characters contribute to the formation of porphyry Cu deposits. Given that majority subduction-related porphyry Cu systems have been eroded following uplift and denudation, the well-preserved Early-Middle Jurassic cu mineralized igneous rocks in south Gangdese are favorable prospecting targets for subduction-related porphyry Cu deposits.展开更多
基金supported by the National Natural Science Foundation Program of China(42102095,42362013,42363009)the Jiangxi Provincial Natural Science Foundation(20224BAB203036,20224BAB213040,20224ACB203008)the Open Research Fund Program of State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(2022NRE12).
文摘The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration.
基金the National Natural Science Foundation of China(Nos.41930428,U2344205,42363009,42002089)the Jiangxi Provincial Natural Science Foundation(Nos.20224BAB213040,20224BAB203036,20224ACB203008)+1 种基金the DHBK project from East China University of Technology(DHBK2019320)the Graduate Innovation Fund from East China University of Technology(YC2023-S554).
文摘The Songshugang deposit is a large Ta-Nb deposit in South China,with Ta-Nb mineralization associated genetically with the granite and pegmatite.A diversity of quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite at Songshugang was studied by CL and LA-ICP-MS in order to constrain enrichment mechanisms of Nb and Ta and to find geochemical indicators of quartz for rare metal deposits.Cathodoluminescence image illuminates a canvas of complexity,the quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite,exhibits numerous dark CL streaks,patches,and a series of healed fractures.These textures suggest that the rocks were fractured because of deep crustal pressure,and underwent later hydrothermal metasomatism and quartz filling.The quartz from quartz-fluorite pegmatite present limited patches or fractures but distinct growth bands,indicating that the melt fluid composition during the formation of quartz at this stage varies greatly and is less aff ected by mechanical fragmentation.The LA-ICP-MS analysis of quartz shows that there is a positive correlation between Al and Li in the quartz from topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,to quartz-fluorite pegmatite,indicating that Al mainly enters the quartz lattice through charge compensation substitution mechanism with Li.However,our data deviate from the theoretical Li:Al mass ratio of~1:3.89 in quartz,indicating that there may be competition between H^(+)and Li in a water-rich magmatic environment.The quartz from topaz-albite granite is enriched in K and Na elements,and the quartz from quartz-fluorite pegmatite is enriched in fluorite with a low Ca content in quartz,further elucidating that these rocks were subjected to hydrothermal metasomatism.From topaz-albitite granite to quartz-fluorite pegmatite,Al,Li and Ge content and Al/Ti,Ge/Ti,Sb/Ti ratios in quartz gradually increased,but Ti content gradually decreased,reflecting the high evolution of magma,which can enrich rare metal elements.Based on the characteristics of quartz CL textures and trace elements in topaz-albite granite,quartz-mica pegmatite,quartz-feldspar pegmatite,and quartz-fluorite pegmatite,combined with the albitization and K-feldspathization of rocks,it is suggested that the Nb-Ta mineralization in Songshugang may be influenced by the combined action of magmatic crystallization differentiation and fluid metasomatism.By comparing the quartz in the Songshugang pluton with the quartz in the granite type and pegmatite type rare metal deposits recognized in the world,the Songshugang pegmatite share similarities with the LCT-type pegmatite.Combined with previous studies,the Ge/Ti>0.1 and Ti<10 ppm,as well as Al,Li,Ge,Sb,K,Na contents and Al/Ti,Sb/Ti ratios in quartz have the potential to be a powerful exploration marker for identifying granite-like pegmatitic Nb-Ta deposits in other places.
基金co-funded by the National Natural Science Foundation of China(Grant Nos.42002089,41930428)the National Key R&D Program of China(Grant Nos.2016YFC0600401 and 2017YFC0602302)+1 种基金by Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University)Ministry of Education(Grant Nos.2020YSJS02,2020YSJS01).
文摘The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years.Generally,ratios of whole-rock trace elements,such as Sr/Y,(La/Yb)n and Ce/Y,are used to characterize crustal thicknesses.However,sometimes confusing results are obtained since there is no enough filtered data.Here,a state-of-the-art approach,based on a machine-learning algorithm,is proposed to predict crustal thickness using global major-and trace-element geochemical data of intermediate arc rocks and intraplate basalts,and their corresponding crustal thicknesses.After the validation processes,the root-mean-square error(RMSE)and the coefficient of determination(R2)score were used to evaluate the performance of the machine learning algorithm based on the learning dataset which has never been used during the training phase.The results demonstrate that the machine learning algorithm is more reliable in predicting crustal thickness than the conventional methods.The trained model predicts that the crustal thickness of the eastern North China Craton(ENCC)was-45 km from the Late Triassic to the Early Cretaceous,but-35 km from the Early Cretaceous,which corresponds to the paleo-elevation of 3.0±1.5 km at Early Mesozoic,and decease to the present-day elevation in the ENCC.The estimates are generally consistent with the previous studies on xenoliths from the lower crust and on the paleoenvironment of the coastal mountain of the ENCC,which indicates that the lower crust of the ENCC was delaminated abruptly at the Early Cretaceous.
基金supported by Strategic Priority Research Program of Chinese Academy of Sciences(XDB03010302)the DREAM project of MOST,China(2016YFC0600407)a contribution No.IS-2396 from GIGCAS
文摘The south Gangdese region is the site of subduction of the Neo-Tethys and subsequent continental col- lision. Compared with widespread Cretaceous and Cenozoic magmatism, Early-Middle Jurassic magmatic rocks and related deposits are rarely reported, Our work identified a 〉200 km long felsic rock belt asso- ciated with Cu mineralization in the south Gangdese region. We report here zircon U-Pb ages, zircon Ce4+/Ce3+ values, and mineral assemblages of two Cu mineralized intrusions within the belt. A horn- blende granite and a diorite porphyry were emplaced at 177.3Ma and 166.3Ma, respectively. Geological occurrence and magmatic hematite-magnetite-chalcopyrite intergrowths suggest that Cu mineralization formed coeval with Jurassic intrusions. Mineralized intrusions have high zircon Ce4+/ Ce3+ and EuN/EuN ratios, and hematite-magnetite intergrowths, suggesting their parent magmas were highly oxidized, Hornblende is common and primary fluid inclusions are found in titanite and apatite, indicating their parent magmas were water-saturated and exsotved volatile phases at early stage of rnag- matic evolution. Those magma characters contribute to the formation of porphyry Cu deposits. Given that majority subduction-related porphyry Cu systems have been eroded following uplift and denudation, the well-preserved Early-Middle Jurassic cu mineralized igneous rocks in south Gangdese are favorable prospecting targets for subduction-related porphyry Cu deposits.