In order to investigate the effect of lanthanum ion implantation on theoxidation behavior of zircaloy at 500℃, Zircaloy specimens were implanted by lanthanum ions with adose range from 5xl0^(16) to 2xl0^(17) ions/cm^...In order to investigate the effect of lanthanum ion implantation on theoxidation behavior of zircaloy at 500℃, Zircaloy specimens were implanted by lanthanum ions with adose range from 5xl0^(16) to 2xl0^(17) ions/cm^2 at room temperature, and then oxidized at 500℃ for100 min. The valence of the oxides in the scale was analyzed by X-ray Photoelectron Spectroscopy(XPS). The phase structures of the oxides in the scale were examined by Glancing Angle X-rayDiffraction (GAXRD). With the increase of implanted lanthanum ions dose, the phase structures in theoxide scale are transformed from monoclinic zirconia to hexagonal one and then to monoclinic oneagain. The measurement of weight gain showed that a similar change from the decreased gain toincreased one again is achieved in the oxidation behavior of lanthanum ion implanted zircaloycompared with that of as-received zircaloy.展开更多
In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irra...In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irradiated by Kr ions using an accelerator at an energy of 300 keV with the dose from 1×1015 to 3×1016ions/cm2. The post-irradiation corrosion tests were conducted to rank the corrosion resistance of the resulting specimens by potentiodynamic polarization curve measurements in a 0.5 mol/L H2SO4 water so- lution at room temperature. Transmission electron microscopy (TEM) was employed to examine the microstructural change in the surface. The potentiodynamic tests show that with the irradiation dose increasing, the passive current density, closely related to the surface corrosion resistance, decreases firstly and increases subsequently. The mechanism of the corrosion behavior transformation is due to the amorphous phase formation firstly and the amorphous phase destruction and the polycrystalline structure formation in the irradiated surface subsequently.展开更多
文摘In order to investigate the effect of lanthanum ion implantation on theoxidation behavior of zircaloy at 500℃, Zircaloy specimens were implanted by lanthanum ions with adose range from 5xl0^(16) to 2xl0^(17) ions/cm^2 at room temperature, and then oxidized at 500℃ for100 min. The valence of the oxides in the scale was analyzed by X-ray Photoelectron Spectroscopy(XPS). The phase structures of the oxides in the scale were examined by Glancing Angle X-rayDiffraction (GAXRD). With the increase of implanted lanthanum ions dose, the phase structures in theoxide scale are transformed from monoclinic zirconia to hexagonal one and then to monoclinic oneagain. The measurement of weight gain showed that a similar change from the decreased gain toincreased one again is achieved in the oxidation behavior of lanthanum ion implanted zircaloycompared with that of as-received zircaloy.
文摘In order to investigate the ion irradiation effect on the corrosion behavior and microstructure of Zircaloy-4, the Zircaloy-4 film were prepared by electron beam deposition on the Zircaloy-4 specimen surface and irradiated by Kr ions using an accelerator at an energy of 300 keV with the dose from 1×1015 to 3×1016ions/cm2. The post-irradiation corrosion tests were conducted to rank the corrosion resistance of the resulting specimens by potentiodynamic polarization curve measurements in a 0.5 mol/L H2SO4 water so- lution at room temperature. Transmission electron microscopy (TEM) was employed to examine the microstructural change in the surface. The potentiodynamic tests show that with the irradiation dose increasing, the passive current density, closely related to the surface corrosion resistance, decreases firstly and increases subsequently. The mechanism of the corrosion behavior transformation is due to the amorphous phase formation firstly and the amorphous phase destruction and the polycrystalline structure formation in the irradiated surface subsequently.