With a transition towards clean and low-carbon renewable energy,against the backdrop of the fossil-energy crisis and rising pollution,ocean energy has been proposed as a significant possibility for mitigating climate ...With a transition towards clean and low-carbon renewable energy,against the backdrop of the fossil-energy crisis and rising pollution,ocean energy has been proposed as a significant possibility for mitigating climate change and energy shortages for its characteristics of clean,renewable,and abundant.The rapid development of energy harvesting technology has led to extensive applications of ocean wave energy,which,however,has faced certain challenges due to the low-frequency and unstable nature of ocean waves.This paper overviews the debut and development of ocean wave energy harvesting technology,and discusses the potential and application paradigm for energy harvesting in the“intelligent ocean.”We first describe for readers the mechanisms and applications of traditional wave energy converters,and then discuss current challenges in energy harvesting performance connected to the characteristics of ocean waves.Next,we summarize the progress in wave energy harvesting with a focus on advanced technologies(e.g.,data-driven design and optimization)and multifunctional energy materials(e.g.,triboelectric metamaterials),and finally propose recommendations for future development.展开更多
Underwater minirobots have attracted significant interest due to their value in complex application scenarios.Typical underwater minirobots are driven mainly by a soft or rigid actuator.However,soft actuation is curre...Underwater minirobots have attracted significant interest due to their value in complex application scenarios.Typical underwater minirobots are driven mainly by a soft or rigid actuator.However,soft actuation is currently facing challenges,including inadequate motional control accuracy and the lack of a continuous and steady driving force,while conventional rigid actuation has limited actuation efficiency,environmental adaptability,and motional flexibility,which severely limits the accomplishment of complicated underwater tasks.In this study,we developed underwater minirobots actuated by a hybrid driving method(HDM)that combines combustion-based actuators and propeller thrusters to achieve accurate,fast,and flexible underwater locomotion performance.Underwater experiments were conducted to investigate the kinematic performance of the minirobots with respect to the motion modes of rising,drifting,and hovering.Numerical models were used to investigate the kinematic characteristics of the minirobots,and theoretical models developed to unveil the mechanical principle that governs the driving process.Satisfactory agreement was obtained from comarisons of the experimental,numerical,and theoretical results.Finally,the HDM was compared with selected hybrid driving technologies in terms of acceleration and response time.The comparison showed that the minirobots based on HDM were generally superior in transient actuation ability and reliability.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52022092,51979247,and 52211530092)the Talent Program of Zhejiang Province(No.2021R52050)+2 种基金the Key Research and Development Plan of Zhejiang Province,China(Nos.2021C03181 and 2023C03122)the Key-Area Research and Development Program of Guangdong Province(No.2021B0707030002),Chinathe Startup Fund of the Hundred Talent Program at Zhejiang University,China。
文摘With a transition towards clean and low-carbon renewable energy,against the backdrop of the fossil-energy crisis and rising pollution,ocean energy has been proposed as a significant possibility for mitigating climate change and energy shortages for its characteristics of clean,renewable,and abundant.The rapid development of energy harvesting technology has led to extensive applications of ocean wave energy,which,however,has faced certain challenges due to the low-frequency and unstable nature of ocean waves.This paper overviews the debut and development of ocean wave energy harvesting technology,and discusses the potential and application paradigm for energy harvesting in the“intelligent ocean.”We first describe for readers the mechanisms and applications of traditional wave energy converters,and then discuss current challenges in energy harvesting performance connected to the characteristics of ocean waves.Next,we summarize the progress in wave energy harvesting with a focus on advanced technologies(e.g.,data-driven design and optimization)and multifunctional energy materials(e.g.,triboelectric metamaterials),and finally propose recommendations for future development.
基金supported by the Key Research and Development Plan of Zhejiang Province,China(No.2021C03181)the Startup Fund of the Hundred Talents Program at the Zhejiang University,Chinathe China Scholarship Council(No.202006320349)。
文摘Underwater minirobots have attracted significant interest due to their value in complex application scenarios.Typical underwater minirobots are driven mainly by a soft or rigid actuator.However,soft actuation is currently facing challenges,including inadequate motional control accuracy and the lack of a continuous and steady driving force,while conventional rigid actuation has limited actuation efficiency,environmental adaptability,and motional flexibility,which severely limits the accomplishment of complicated underwater tasks.In this study,we developed underwater minirobots actuated by a hybrid driving method(HDM)that combines combustion-based actuators and propeller thrusters to achieve accurate,fast,and flexible underwater locomotion performance.Underwater experiments were conducted to investigate the kinematic performance of the minirobots with respect to the motion modes of rising,drifting,and hovering.Numerical models were used to investigate the kinematic characteristics of the minirobots,and theoretical models developed to unveil the mechanical principle that governs the driving process.Satisfactory agreement was obtained from comarisons of the experimental,numerical,and theoretical results.Finally,the HDM was compared with selected hybrid driving technologies in terms of acceleration and response time.The comparison showed that the minirobots based on HDM were generally superior in transient actuation ability and reliability.