Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Th...Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries.展开更多
The molecular network features of spinal cord development that are integral to tissue engineering remain poorly understood in placental mammals,especially in terms of their relationships with vital biological processe...The molecular network features of spinal cord development that are integral to tissue engineering remain poorly understood in placental mammals,especially in terms of their relationships with vital biological processes such as regeneration.Here,using a large-scale temporal transcriptomic analysis of rat spinal cord from the embryonic stage to adulthood,we show that fluctuating RNA expression levels reflect highly active transcriptional regulation,which may initiate spinal cord patterning.We also demonstrate that microRNAs(miRNAs)and transcriptional factors exhibit a mosaic profile based on their expression patterns,while differential alternative splicing events reveal that alternative splicing may be a driving force for the development of the node of Ranvier.Our study also supports the existence of a negative correlation between innate immunity and intrinsic growth capacity.Epigenetic modifications appear to perform their respective regulatory functions at different stages of development,while guanine nucleotidebinding protein(G protein)-coupled receptors(including olfactory receptors(ORs))may perform pleiotropic roles in axonal growth.This study provides a valuable resource for investigating spinal cord development and complements the increasing number of single-cell datasets.These findings also provide a genetic basis for the development of novel tissue engineering strategies.展开更多
Transition metal oxides hold great promise for lithium-ion batteries(LIBs)and electrocatalytic water splitting because of their high abundance and high energy density.However,designing and fabrication of efficient,sta...Transition metal oxides hold great promise for lithium-ion batteries(LIBs)and electrocatalytic water splitting because of their high abundance and high energy density.However,designing and fabrication of efficient,stable,high power density electrode materials are challenging.Herein,we report rambutan-like hollow carbon spheres formed by carbon nanosheet decorated with nickel oxide(NiO)rich inmetal vacancies(denoted as h-NiO/C)as a bifunctional electrode material for LIBs and electrocatalytic oxygen evolution reaction(OER).When being used as the anode of LIBs,the h-NiO/C electrode shows a large initial capacity of 885mAh g−1,a robust stability with a high capacity of 817mAh g−1 after 400 cycles,and great rate capability with a high reversible capacity of 523mAh g−1 at 10Ag−1 after 600 cycles.Moreover,working as an OER electrocatalyst,the h-NiO/C electrode shows a small overpotential of 260mV at 10mAcm−2,a Tafel slope of 37.6mVdec−1 along with good stability.Our work offers a cost-effective method for the fabrication of efficient electrode for LIBs and OER.展开更多
Graphene is a type of promising electrode material for high-energy and high-power density supercapacitors,but its electrochemical performance is greatly limited by the restacking problem.In this work,we reported a fac...Graphene is a type of promising electrode material for high-energy and high-power density supercapacitors,but its electrochemical performance is greatly limited by the restacking problem.In this work,we reported a facile approach to synthesis graphene with chemically bonded vanadium oxide(VOx)nanoparticles and demonstrated that chemically-bonded VOxnanoparticles can effectively prevent the graphene sheets from restacking and hence improve the electrochemical performance.The capacitance of VOxbonded graphene increases to 272 F/g compared to 183 F/g of pristine graphene in 1 M H3PO4 aqueous electrolyte at 2 A/g.The VOx-bonded graphene also showed improved rate capability in both H3PO4 and ionic liquid electrolytes.The capacitance retention increases to 54.5%from 28.5%at 100 A/g(compare to2 A/g)in H3PO4 and increases to 65.1%from 46.3%at 2 A/g(compare to 0.2 A/g)in neat ionic liquid.A high energy density of 84.4 Wh/kg is obtained within the voltage window of 4 V in ionic liquid.Even at a high-power density of 1000 W/kg,the VOx-bonded graphene shows a high energy density of 47.3 Wh/kg.展开更多
Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs(ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior a...Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs(ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior and change the biological milieu of the tissue. The application of ncRNAs in tissue engineering is starting to attract increasing attention as a means of resolving a large number of unmet healthcare needs, although ncRNA-based approaches have not yet entered clinical practice. In-depth research on the regulation and delivery of ncRNAs may improve their application in tissue engineering.The aim of this review is: to outline essential ncRNAs that are related to tissue engineering for the repair and regeneration of nerve, skin, liver, vascular system, and muscle tissue; to discuss their regulation and delivery; and to anticipate their potential therapeutic applications.展开更多
Along with the constantly evolving functional microsystems toward more diversification,the more rigorous design deliberation of pursuing higher mass-loading of electrode materials and low-temperature fabrication compa...Along with the constantly evolving functional microsystems toward more diversification,the more rigorous design deliberation of pursuing higher mass-loading of electrode materials and low-temperature fabrication compatibility have imposed unprecedented demand on integrable all-solid-state thin-film microbatteries.While the classic thin-film intercalation cathode prepared by vacuum-based techniques inevitably encountered a post-annealing process,tape-casting technologies hold great merits both in terms of high-mass loading and low-temperature processing.In this work,a novel microbattery configura-tion is developed by the combination of traditional tape-casting thick electrodes and sputtered inorganic thin-film solid electrolytes(~3μm lithium phosphorus oxynitride).Enabled by physically pressed or vapor-deposited Li as an anode,solid-state batteries with tape-casted LiFePO_(4) electrodes exhibit outstanding cyclability and stability.To meet integration requirements,LiFePO4/LiPON/Si microbatteries were successfully fabricated at low temperatures and found to achieve a wide operating temperature range.This novel configuration has good prospects in promoting the thin-film microbattery enabling a paradigm shift and satisfying diversified requirements.展开更多
作为微电池的核心指标之一,面积功率密度决定了微电池与应用于物联网的微电子器件集成时所需的面积.目前,由于微电子器件尺寸有限,微电池的实际应用受到低面积功率密度的限制.本文研究发现,经过原位等离子体预处理衬底后,溅射的铁氧硫...作为微电池的核心指标之一,面积功率密度决定了微电池与应用于物联网的微电子器件集成时所需的面积.目前,由于微电子器件尺寸有限,微电池的实际应用受到低面积功率密度的限制.本文研究发现,经过原位等离子体预处理衬底后,溅射的铁氧硫化物薄膜(FeOxSy)具备超高功率特性.这种原位等离子体预处理可作为一种通用的界面优化策略来抑制长循环过程中的机械衰变.该正极薄膜展现出极高的功率密度和稳定的循环性能,这是由其高度的结构完整性(强大的界面粘附性和应力释放的岛)、完美的电化学可逆性以及近表面电荷交换(赝电容锂存储机制)的协同作用导致的.预处理的FeOxSy薄膜可以输出高达14.6 mW cm-2的功率密度和291μW h cm^(-2)μm^(-1)的体积能量密度.制备得到的正极薄膜的功率密度优于已报道的具有相当面积容量的溅射薄膜.本工作提出了一种简单且高效的预处理方法来制备具有超高功率密度且稳定的微电池薄膜电极.展开更多
Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors–the glial scar is triggered by injury and inhibits or promotes regeneration.Rec...Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors–the glial scar is triggered by injury and inhibits or promotes regeneration.Recent technological advances in spatial transcriptomics(ST)provide a unique opportunity to decipher most genes systematically throughout scar formation,which remains poorly understood.Here,we frst constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples.Locally,we profled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment,such as neurotransmitter disorders,activation of the pro-infammatory response,neurotoxic saturated lipids,angiogenesis,obstructed axon extension,and extracellular structure re-organization.In addition,we described 21 cell transcriptional states during scar formation and delineated the origins,functional diversity,and possible trajectories of subpopulations of fbroblasts,glia,and immune cells.Specifcally,we found some regulators in special cell types,such as Thbs1 and Col1a2 in macrophages,CD36 and Postn in fbroblasts,Plxnb2 and Nxpe3 in microglia,Clu in astrocytes,and CD74 in oligodendrocytes.Furthermore,salvianolic acid B,a blood–brain barrier permeation and CD36 inhibitor,was administered after surgery and found to remedy fbrosis.Subsequently,we described the extent of the scar boundary and profled the bidirectional ligand-receptor interactions at the neighboring cluster boundary,contributing to maintain scar architecture during gliosis and fbrosis,and found that GPR37L1_PSAP,and GPR37_PSAP were the most signifcant gene-pairs among microglia,fbroblasts,and astrocytes.Last,we quantifed the fraction of scar-resident cells and proposed four possible phases of scar formation:macrophage infltration,proliferation and diferentiation of scar-resident cells,scar emergence,and scar stationary.Together,these profles delineated the spatial heterogeneity of the scar,confrmed the previous concepts about scar architecture,provided some new clues for scar formation,and served as a valuable resource for the treatment of central nervous system injury.展开更多
Due to the highly porous structure,large specific surface area,and 3 D interconnected metal conductive network,nanoporous metal foams have attracted a lot of attention in the field of energy conversion and storage,esp...Due to the highly porous structure,large specific surface area,and 3 D interconnected metal conductive network,nanoporous metal foams have attracted a lot of attention in the field of energy conversion and storage,especially lithium-ion batteries,which are ideal for current collectors.In this work,we develop a facile approach to fabricate core-shell Ni3Se2/Ni nanofoams composites.The Ni3Se2/Ni composites make full use of both the advantages of metal conductive network and core-shell structure,resulting in a high capacity and superior rate performance.In addition,the composites can be directly converted into electrode by a simple mechanical compression,which is more convenient than traditional casting method.What’s more,this material and its structure can be extended to other devices in the field of energy conversion and storage.展开更多
Acetaminophen(APAP)overdose is a major cause of liver injury.Neural precursor cell expressed developmentally downregulated 4—1(NEDD4-1)is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerou...Acetaminophen(APAP)overdose is a major cause of liver injury.Neural precursor cell expressed developmentally downregulated 4—1(NEDD4-1)is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerous liver diseases;however,its role in APAP-induced liver injury(AILI)is unclear.Thus,this study aimed to investigate the role of NEDD4-1 in the pathogenesis of AILI.We found that NEDD4-1 was dramatically downregulated in response to APAP treatment in mouse livers and isolated mouse hepatocytes.Hepatocyte-specific NEDD4-1 knockout exacerbated APAP-induced mitochondrial damage and the resultant hepatocyte necrosis and liver injury,while hepatocyte-specific NEDD4-1 overexpression mitigated these pathological events both in vivo and in vitro.Additionally,hepatocyte NEDD4-1 deficiency led to marked accumulation of voltage-dependent anion channel 1(VDAC1)and increased VDAC1 oligomerization.Furthermore,VDAC1 knockdown alleviated AILI and weakened the exacerbation of AILI caused by hepatocyte NEDD4-1 deficiency.Mechanistically,NEDD4-1 was found to interact with the PPTY motif of VDAC1 through its WW domain and regulate K48-linked ubiquitination and degradation of VDAC1.Our present study indicates that NEDD4-1 is a suppressor of AILI and functions by regulating the degradation of VDAC1.展开更多
Potassium-ion batteries(PIBs)are of academic and economic significance,but still limited by the lack of highly active electrode materials for de-/intercalation of large-radius K ions.Herein,an interconnected nitrogen/...Potassium-ion batteries(PIBs)are of academic and economic significance,but still limited by the lack of highly active electrode materials for de-/intercalation of large-radius K ions.Herein,an interconnected nitrogen/sulfur co-doped carbon nanosheep bundle(N/S-CSB)was proposed as the potassium ions storage material.The rich co-doping of nitrogen/sulfur of N/S-CNB with three-dimensional hierarchical bundled array structure yields distensible interlayer spaces to buffer the volume expansion during K+insertion/extraction,offers more electrochemical active sites to obtain a high specific capacity,and provides efficient channels for fast ion/electron transports.Therefore,the N/S-CSB anode achieved high reversible specific capacity of 365 mAh/g obtained at 50 mA/g after 200 cycles with a coulombic efficiency(CE)close to 100%,high rate performance and long cycle stability.Moreover,the in-situ Raman spectra indicated outstanding reaction kinetics of as-prepared N/S-CSB anode.展开更多
基金supported by National Natural Science Foundation of China(No.U22A20118)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR146,2021ZZ122)Award Program for Fujian Minjiang Scholar Professorship。
文摘Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries.
基金This work was supported by the National Natural Science Foundation of China(31730031)the National Key Research and Development Program of China(2017YFA0104700 and 2016YFC1101603)the Jiangsu Provincial Key Medical Center and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The molecular network features of spinal cord development that are integral to tissue engineering remain poorly understood in placental mammals,especially in terms of their relationships with vital biological processes such as regeneration.Here,using a large-scale temporal transcriptomic analysis of rat spinal cord from the embryonic stage to adulthood,we show that fluctuating RNA expression levels reflect highly active transcriptional regulation,which may initiate spinal cord patterning.We also demonstrate that microRNAs(miRNAs)and transcriptional factors exhibit a mosaic profile based on their expression patterns,while differential alternative splicing events reveal that alternative splicing may be a driving force for the development of the node of Ranvier.Our study also supports the existence of a negative correlation between innate immunity and intrinsic growth capacity.Epigenetic modifications appear to perform their respective regulatory functions at different stages of development,while guanine nucleotidebinding protein(G protein)-coupled receptors(including olfactory receptors(ORs))may perform pleiotropic roles in axonal growth.This study provides a valuable resource for investigating spinal cord development and complements the increasing number of single-cell datasets.These findings also provide a genetic basis for the development of novel tissue engineering strategies.
基金We acknowledge Dr Hangjun Ying from Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences for TEM characterizations.This study was supported by Nanyang Technological University under NAP award(M408050000)Singapore Ministry of Education Tier 1 program(2018-T1-001-051).We acknowledge Dr Hangjun Ying from Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences for TEM characterizations.This study was supported by Nanyang Technological University under NAP award(M408050000Singapore Ministry of Education Tier 1 program(2018-T1-001-051).
文摘Transition metal oxides hold great promise for lithium-ion batteries(LIBs)and electrocatalytic water splitting because of their high abundance and high energy density.However,designing and fabrication of efficient,stable,high power density electrode materials are challenging.Herein,we report rambutan-like hollow carbon spheres formed by carbon nanosheet decorated with nickel oxide(NiO)rich inmetal vacancies(denoted as h-NiO/C)as a bifunctional electrode material for LIBs and electrocatalytic oxygen evolution reaction(OER).When being used as the anode of LIBs,the h-NiO/C electrode shows a large initial capacity of 885mAh g−1,a robust stability with a high capacity of 817mAh g−1 after 400 cycles,and great rate capability with a high reversible capacity of 523mAh g−1 at 10Ag−1 after 600 cycles.Moreover,working as an OER electrocatalyst,the h-NiO/C electrode shows a small overpotential of 260mV at 10mAcm−2,a Tafel slope of 37.6mVdec−1 along with good stability.Our work offers a cost-effective method for the fabrication of efficient electrode for LIBs and OER.
基金supported by the Fundamental Research(Discipline Arrangement)Project funding from Shenzhen Science and Technology Innovation Committee(Grant no.JCYJ20170412154554048)the Peacock Team Project funding from Shenzhen Science and Technology Innovation Committee(Grant no.KQTD2015033110182370)+3 种基金the National Key Research and Development Project funding from the Ministry of Science and Technology of China(Grants nos.2016YFA0202400 and 2016YFA0202404)the Shenzhen Maker Project for Students(Grant no.GRCK2017042410565958)the Guangdong Innovation Team Project(no.2013N080)the Shenzhen Peacock Plan(Grant no.KYPT20141016105435850)。
文摘Graphene is a type of promising electrode material for high-energy and high-power density supercapacitors,but its electrochemical performance is greatly limited by the restacking problem.In this work,we reported a facile approach to synthesis graphene with chemically bonded vanadium oxide(VOx)nanoparticles and demonstrated that chemically-bonded VOxnanoparticles can effectively prevent the graphene sheets from restacking and hence improve the electrochemical performance.The capacitance of VOxbonded graphene increases to 272 F/g compared to 183 F/g of pristine graphene in 1 M H3PO4 aqueous electrolyte at 2 A/g.The VOx-bonded graphene also showed improved rate capability in both H3PO4 and ionic liquid electrolytes.The capacitance retention increases to 54.5%from 28.5%at 100 A/g(compare to2 A/g)in H3PO4 and increases to 65.1%from 46.3%at 2 A/g(compare to 0.2 A/g)in neat ionic liquid.A high energy density of 84.4 Wh/kg is obtained within the voltage window of 4 V in ionic liquid.Even at a high-power density of 1000 W/kg,the VOx-bonded graphene shows a high energy density of 47.3 Wh/kg.
基金This work was supported by the National Basic Research Program of China (973 Program, 2014CB542202), the National HiTech Research and Development Program of China (863 Program, 2012AA020502), the National Natural Science Foundation of China (81130080 and 31300879), and the Key University Science Research Project of Jiangsu Province (16KJA310005). It was also a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs(ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior and change the biological milieu of the tissue. The application of ncRNAs in tissue engineering is starting to attract increasing attention as a means of resolving a large number of unmet healthcare needs, although ncRNA-based approaches have not yet entered clinical practice. In-depth research on the regulation and delivery of ncRNAs may improve their application in tissue engineering.The aim of this review is: to outline essential ncRNAs that are related to tissue engineering for the repair and regeneration of nerve, skin, liver, vascular system, and muscle tissue; to discuss their regulation and delivery; and to anticipate their potential therapeutic applications.
基金National Natural Science Foundation of China,Grant/Award Number:U22A20118Natural Science Foundation of Fujian Province,Grant/Award Number:2023J01400+1 种基金Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China,Grant/Award Number:2021ZZ122Award Program for Fujian Minjiang Scholar Professorship。
文摘Along with the constantly evolving functional microsystems toward more diversification,the more rigorous design deliberation of pursuing higher mass-loading of electrode materials and low-temperature fabrication compatibility have imposed unprecedented demand on integrable all-solid-state thin-film microbatteries.While the classic thin-film intercalation cathode prepared by vacuum-based techniques inevitably encountered a post-annealing process,tape-casting technologies hold great merits both in terms of high-mass loading and low-temperature processing.In this work,a novel microbattery configura-tion is developed by the combination of traditional tape-casting thick electrodes and sputtered inorganic thin-film solid electrolytes(~3μm lithium phosphorus oxynitride).Enabled by physically pressed or vapor-deposited Li as an anode,solid-state batteries with tape-casted LiFePO_(4) electrodes exhibit outstanding cyclability and stability.To meet integration requirements,LiFePO4/LiPON/Si microbatteries were successfully fabricated at low temperatures and found to achieve a wide operating temperature range.This novel configuration has good prospects in promoting the thin-film microbattery enabling a paradigm shift and satisfying diversified requirements.
基金supported by the Award Program for Fujian Minjiang Scholar Professorship,the National Natural Science Foundation of China(11704071 and 51871188)the Excellent Youth Foundation of Fujian Scientific Committee(2019J06008)+1 种基金Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR146)Fujian Provincial Department of Industry and Information Technology(82318075)。
文摘作为微电池的核心指标之一,面积功率密度决定了微电池与应用于物联网的微电子器件集成时所需的面积.目前,由于微电子器件尺寸有限,微电池的实际应用受到低面积功率密度的限制.本文研究发现,经过原位等离子体预处理衬底后,溅射的铁氧硫化物薄膜(FeOxSy)具备超高功率特性.这种原位等离子体预处理可作为一种通用的界面优化策略来抑制长循环过程中的机械衰变.该正极薄膜展现出极高的功率密度和稳定的循环性能,这是由其高度的结构完整性(强大的界面粘附性和应力释放的岛)、完美的电化学可逆性以及近表面电荷交换(赝电容锂存储机制)的协同作用导致的.预处理的FeOxSy薄膜可以输出高达14.6 mW cm-2的功率密度和291μW h cm^(-2)μm^(-1)的体积能量密度.制备得到的正极薄膜的功率密度优于已报道的具有相当面积容量的溅射薄膜.本工作提出了一种简单且高效的预处理方法来制备具有超高功率密度且稳定的微电池薄膜电极.
基金supported by the National Natural Science Foundation of China(32130060,81870975,81971170,92168105)the Natural Science Foundation of Jiangsu Province(BK20202013)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and the Natural Science Fund for Colleges and Universities in Jiangsu Province,China(19KJB180006).
文摘Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors–the glial scar is triggered by injury and inhibits or promotes regeneration.Recent technological advances in spatial transcriptomics(ST)provide a unique opportunity to decipher most genes systematically throughout scar formation,which remains poorly understood.Here,we frst constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples.Locally,we profled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment,such as neurotransmitter disorders,activation of the pro-infammatory response,neurotoxic saturated lipids,angiogenesis,obstructed axon extension,and extracellular structure re-organization.In addition,we described 21 cell transcriptional states during scar formation and delineated the origins,functional diversity,and possible trajectories of subpopulations of fbroblasts,glia,and immune cells.Specifcally,we found some regulators in special cell types,such as Thbs1 and Col1a2 in macrophages,CD36 and Postn in fbroblasts,Plxnb2 and Nxpe3 in microglia,Clu in astrocytes,and CD74 in oligodendrocytes.Furthermore,salvianolic acid B,a blood–brain barrier permeation and CD36 inhibitor,was administered after surgery and found to remedy fbrosis.Subsequently,we described the extent of the scar boundary and profled the bidirectional ligand-receptor interactions at the neighboring cluster boundary,contributing to maintain scar architecture during gliosis and fbrosis,and found that GPR37L1_PSAP,and GPR37_PSAP were the most signifcant gene-pairs among microglia,fbroblasts,and astrocytes.Last,we quantifed the fraction of scar-resident cells and proposed four possible phases of scar formation:macrophage infltration,proliferation and diferentiation of scar-resident cells,scar emergence,and scar stationary.Together,these profles delineated the spatial heterogeneity of the scar,confrmed the previous concepts about scar architecture,provided some new clues for scar formation,and served as a valuable resource for the treatment of central nervous system injury.
基金financially supported by the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(ZQN-PY608)the Fujian Provincial Natural Science Foundation of China(No.2017J05008)the National Natural Science Foundation of China(No.11704071).
文摘Due to the highly porous structure,large specific surface area,and 3 D interconnected metal conductive network,nanoporous metal foams have attracted a lot of attention in the field of energy conversion and storage,especially lithium-ion batteries,which are ideal for current collectors.In this work,we develop a facile approach to fabricate core-shell Ni3Se2/Ni nanofoams composites.The Ni3Se2/Ni composites make full use of both the advantages of metal conductive network and core-shell structure,resulting in a high capacity and superior rate performance.In addition,the composites can be directly converted into electrode by a simple mechanical compression,which is more convenient than traditional casting method.What’s more,this material and its structure can be extended to other devices in the field of energy conversion and storage.
基金supported by the National Natural Science Foundation of China(Beijing,ChinaGrant Nos.32022084 and 32172927)。
文摘Acetaminophen(APAP)overdose is a major cause of liver injury.Neural precursor cell expressed developmentally downregulated 4—1(NEDD4-1)is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerous liver diseases;however,its role in APAP-induced liver injury(AILI)is unclear.Thus,this study aimed to investigate the role of NEDD4-1 in the pathogenesis of AILI.We found that NEDD4-1 was dramatically downregulated in response to APAP treatment in mouse livers and isolated mouse hepatocytes.Hepatocyte-specific NEDD4-1 knockout exacerbated APAP-induced mitochondrial damage and the resultant hepatocyte necrosis and liver injury,while hepatocyte-specific NEDD4-1 overexpression mitigated these pathological events both in vivo and in vitro.Additionally,hepatocyte NEDD4-1 deficiency led to marked accumulation of voltage-dependent anion channel 1(VDAC1)and increased VDAC1 oligomerization.Furthermore,VDAC1 knockdown alleviated AILI and weakened the exacerbation of AILI caused by hepatocyte NEDD4-1 deficiency.Mechanistically,NEDD4-1 was found to interact with the PPTY motif of VDAC1 through its WW domain and regulate K48-linked ubiquitination and degradation of VDAC1.Our present study indicates that NEDD4-1 is a suppressor of AILI and functions by regulating the degradation of VDAC1.
基金the National Natural Science Foundation of China(Nos.52074113 and 22005091)the Fundamental Research Funds of the Central Universities(No.531107051048)+2 种基金Xidong Duan acknowledges support by the National Natural Science Foundation of China(No.51872086)the Hunan Key Laboratory of Two-Dimensional Materials(No.2018TP1010)the Innovative Research Groups of Hunan Province(No.2020JJ1001)。
文摘Potassium-ion batteries(PIBs)are of academic and economic significance,but still limited by the lack of highly active electrode materials for de-/intercalation of large-radius K ions.Herein,an interconnected nitrogen/sulfur co-doped carbon nanosheep bundle(N/S-CSB)was proposed as the potassium ions storage material.The rich co-doping of nitrogen/sulfur of N/S-CNB with three-dimensional hierarchical bundled array structure yields distensible interlayer spaces to buffer the volume expansion during K+insertion/extraction,offers more electrochemical active sites to obtain a high specific capacity,and provides efficient channels for fast ion/electron transports.Therefore,the N/S-CSB anode achieved high reversible specific capacity of 365 mAh/g obtained at 50 mA/g after 200 cycles with a coulombic efficiency(CE)close to 100%,high rate performance and long cycle stability.Moreover,the in-situ Raman spectra indicated outstanding reaction kinetics of as-prepared N/S-CSB anode.