KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause...KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.展开更多
The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such h...The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries.展开更多
Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has gar...Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has garnered significant interest due to its remarkable properties such as negative/zero thermal expansion and magnetocaloric effects.However,when utilized as hydrogen evolution catalysts,it encounters large challenge resulting from excessively strong/weak interactions with adsorbed H on Mn/Cu active sites,which leads to low HER activity.In this study,we introduce an asymmetric orbital hybridization strategy in Zn-doped Cu_(1-x)Zn_(x)NMn_(3)by leveraging the localization of Zn electronic states to reconfigure the electronic structures of Cu and Mn,thereby reducing the energy barrier for water dissociation and optimizing Cu and Mn active sites for hydrogen adsorption and H_(2)production.Electrochemical evaluations reveal that Cu_(0.85)Zn_(0.15)NMn_(3)with x=0.15 demonstrates exceptional electrocatalytic activity in alkaline electrolytes.A low overpotential of 52 mV at 10 mA cm^(-2)and outstanding stability over a 150-h test period are achieved,surpassing commercial Pt/C.This research offers a novel strategy for enhancing HER performance by modulating asymmetric hybridization of electron orbitals between multiple metal atoms within a material structure.展开更多
The number of lithium-ion batteries(LIBs)is steadily increasing in order to meet the ever-growing demand for sustainable energy and a high quality of life for humankind.At the same time,the resulting large number of L...The number of lithium-ion batteries(LIBs)is steadily increasing in order to meet the ever-growing demand for sustainable energy and a high quality of life for humankind.At the same time,the resulting large number of LIB waste certainly poses safety hazards if it is not properly disposed of and will seriously harm the environment due to its inherent toxicity due to the use of toxic substances.Moreover,the consumption of many scarce precious metal resources is behind the mass production of batteries.In the light of severe environmental,resources,safety and recycling problems,recycling spent LIBs have become an essential urgently needed action to achieve sustainable social development.This review therefore critically analyses the value and the need for recycling of spent LIBs from a variety of resources and the environment.A range of existing technologies for recycling and reusing spent LIBs,such as pretreatment,pyrometallurgy,hydrometallurgy,and direct recycled methods,is subsequently summarized exclusively.In addition,the benefits and problems of the methods described above are analyzed in detail.It also introduces recycling progress of other LIB components,such as anodes,separators,and electrolytes,as well as the high-value cathode.Finally,the prospects for recycling LIBs are addressed in four ways(government,users,battery manufacturers,and recyclers).This review should contribute to the development of the recycling of used LIBs,particularly in support of industrialization and recycling processes.展开更多
Medical image segmentation plays a crucial role in clinical diagnosis and therapy systems,yet still faces many challenges.Building on convolutional neural networks(CNNs),medical image segmentation has achieved tremend...Medical image segmentation plays a crucial role in clinical diagnosis and therapy systems,yet still faces many challenges.Building on convolutional neural networks(CNNs),medical image segmentation has achieved tremendous progress.However,owing to the locality of convolution operations,CNNs have the inherent limitation in learning global context.To address the limitation in building global context relationship from CNNs,we propose LGNet,a semantic segmentation network aiming to learn local and global features for fast and accurate medical image segmentation in this paper.Specifically,we employ a two-branch architecture consisting of convolution layers in one branch to learn local features and transformer layers in the other branch to learn global features.LGNet has two key insights:(1)We bridge two-branch to learn local and global features in an interactive way;(2)we present a novel multi-feature fusion model(MSFFM)to leverage the global contexture information from transformer and the local representational features from convolutions.Our method achieves state-of-the-art trade-off in terms of accuracy and efficiency on several medical image segmentation benchmarks including Synapse,ACDC and MOST.Specifically,LGNet achieves the state-of-the-art performance with Dice's indexes of 80.15%on Synapse,of 91.70%on ACDC,and of 95.56%on MOST.Meanwhile,the inference speed attains at 172 frames per second with 224-224 input resolution.The extensive experiments demonstrate the effectiveness of the proposed LGNet for fast and accurate for medical image segmentation.展开更多
The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercializ...The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible.展开更多
Self-standing carbon-based substrates with satisfied structural stability and property adjustability have promising applications in flexible lithium(Li)metal batteries(FLMBs).Current strategies for modifying carbon ma...Self-standing carbon-based substrates with satisfied structural stability and property adjustability have promising applications in flexible lithium(Li)metal batteries(FLMBs).Current strategies for modifying carbon materials are normally carried out on powder carbon,and very few of them are suitable for self-standing carbon substrates.Herein,a pore-forming strategy based on the redox chemistry of metallic oxide nanodots is developed to prepare two porous carbon substrates for anode and cathode.Starting with cotton cloth,the resulting hollow carbon fibers substrate with nanopores effectively prevents from Li dendrites formation and large volume change in lithium metal anode(LMA).Simulations indicate that the porous structure leads to homogeneous ion flux,Li-ion concentration,and electric field during Li deposition.Li symmetrical cell based on this substrate remains stable for 8300 h with an ultralow voltage hysteresis of 9 mV.Via a similar route,porous carbon cloth substrate is obtained for subsequently seeding V_(2)O_(5)nanowires to prepare the cathode.The assembled FLMBs pouch cell delivers a capacity of 8.2 mAh with a high capacity retention of~100%even under dramatic deformation.The demonstrated strategy has far-reaching potential in preparing free-standing porous carbon-based materials for flexible energy storage devices.展开更多
[Objectives]This study was conducted to select media suitable for proliferation,differentiation and rooting of Cymbidium hybridum"Huangjinjia".[Methods]The lateral buds and protocorms of the new variety C.hy...[Objectives]This study was conducted to select media suitable for proliferation,differentiation and rooting of Cymbidium hybridum"Huangjinjia".[Methods]The lateral buds and protocorms of the new variety C.hybridum"Huangjinjia"were used as materials to explore the effects of different concentrations of 6-BA and NAA on protocorm proliferation and rooting.[Results]The optimal medium for protocorm propagation was 1/2 MS+6-BA 1.0 mg/L+NAA0.5 mg/L+potato 50 g/L+sucrose 20 g/L,in which the protocorms multiplied easily and grew rapidly.The optimal medium for inducing adventitious buds was1/2 MS+6-BA 1.5 mg/L+NAA 0.3 mg/L+sucrose 30 g/L+banana 25 g/L+apple 25 g/L+activated carbon 1.0 g/L,in which the induction rate of adventitious buds reached 335%.The optimal medium for rooting was 1/2 MS+NAA 0.5 mg/L+sucrose 25 g/L+banana 75 g/L+apple 25 g/L+activated carbon1.0 g/L,in which the average root length was 3.0 cm,the average number of roots was 2.6,and plantlets had green leaves,thick roots and suitable plant height.[Conclusions]This study provides a theoretical basis and reference for the establishment of a rapid propagation system using lateral buds.展开更多
Senile male, physically fit at usual, he died suddenly without any clinical symptoms. By autopsy dissection, it was found that large amount of bleeding was presented in pericardial cavity, the abdominal cavity and tho...Senile male, physically fit at usual, he died suddenly without any clinical symptoms. By autopsy dissection, it was found that large amount of bleeding was presented in pericardial cavity, the abdominal cavity and thoracic cavity had a small amount of hemorrhage, partial pancrea tissue had coagulation necrosis accompanied with infiltration of neutrophile granulocyte and degeneration and necrosis of liver cell accompanied with acute or chronic inflammation cell infiltration. Laboratory examination of the patient when he was alive suggested that liver function and coagulation function had obstacles, there was not any timely clinical process, and he died suddenly. Autopsy examination results suggested that acute pancreatitis caused a large quantity of bleeding in pericardial cavity, which led to cardiac tamponade and it cause acute circulation failure, which initiated cardiac arrest and then death. Coronary heart disease may exert certain facilitation effect in the death process. Patients with pancreatitis, especially the senile and pancreatitis patients with coronary artery disease, should be evaluated and prevented ahead of schedule, for those patients who had coma suddenly, it should be thought that it had possibility of combining with hemorrhage in the interior of pericardial cavity, the patient's doctor should try his or her best to reduce death rate.展开更多
The demand for large-scale energy storage is increasing due to the decreasing non-renewable resources and deteriorating environmental pollution.Developing rechargeable batteries with high energy density and long cycle...The demand for large-scale energy storage is increasing due to the decreasing non-renewable resources and deteriorating environmental pollution.Developing rechargeable batteries with high energy density and long cycle performance is an ideal choice to meet the demand of energy storage system.The development of excellent electrode particles is of great significance in the commercialization of nextgeneration batteries.The ideal electrode particles should balance raw material reserves,electrochemical performance,price and environmental protection.Among them,the development of electrode particulate materials with excellent electrochemical properties is the top priority at present.In this review,the typical researches of electrode materials are summarized in terms of crystal structure,morphology,pore structure,surface and interface regulation.Firstly,the structural characteristics and improvement methods of transition metal oxides,polyanionic compounds,Prussian blue and their analogues are introduced.Then,the different effects of particulate morphology,pore,surface and interface structure on the performance of electrode materials are discussed.For designing high-performance electrode materials,preparation route should be set according to the particle properties of the materials and the synergistic effect of various optimization methods should be adopted.At the same time,in addition to the electrode materials,other components of the rechargeable batteries,such as current collector,separator and electrolytes,should be optimized to improve the overall performance of the batteries.This review would provide important guiding principle for designing high-performance electrode particulate materials.展开更多
Metal organic framework(MOF) has been confirmed as the promising precursor to develop the conve rsion-typed anode mate rials of sodium-ion batteries(SIBs) because of the tunable structure design and simple functional ...Metal organic framework(MOF) has been confirmed as the promising precursor to develop the conve rsion-typed anode mate rials of sodium-ion batteries(SIBs) because of the tunable structure design and simple functional modification.Here,we prepare the ultrasmall Ni_(3)S_(2) nanocrystals embedded into N-doped porous carbon nanoparticles using the scalable Ni-MOF as precursor(denoted as Ni_(3)S_(2)@NPC).The ultrasmall size of Ni_(3)S_(2) can work for accelerated electro n/ion transfer to facilitate the electrochemical reaction kinetics.Moreover,the robust conductivity network originated from N-doped porous carbon nanoparticles can not only improve the electron conductivity,but also enhance the electrode integrity and stability of the electrode/electrolyte interface.In addition,the N heteroatoms provide extra Na storage sites.Accordingly,the electrode delivers the obviously competitive capacities and high-power output with respect to the currently reported Ni_(3)S_(2)/C composites.This study provides a scalable and universal strategy to develop the advanced transition metal sulfides for practically feasible SIBs.展开更多
Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is a...Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is an ideal electrode for fast energy storage on account of its low cost and high theoretical capacity.Herein,Fe1-xS nanosheet wrapped by nitrogen-doped carbon(Fe1-xS@NC)is engineered through a post-sulfidation strategy using Fe-based metal-organic framework(Fe-MOF)as the precursor.The obtained Fe1-xS@NC agaric-like structure can well shorten the charge diffusion pathway,and significantly enhance the ionic/electronic conductivities and the reaction kinetics.As expected,the Fe1-xS@NC electrode,as a prospective SIB anode,delivers a desirable capacity up to 510.2 mA h g^-1 at a high rate of8000 mA g^-1.Additionally,even operated at low temperatures of 0 and-25°C,high reversible capacities of 387.1 and 223.4 mA h g^-1 can still be obtained at 2000 mA g^-1,respectively,indicating its huge potential use at harsh temperatures.More noticeably,the full battery made by the Fe1-xS@NC anode and Na3 V2(PO4)2 O2 F cathode achieves a remarkable rate capacity(186.8 mA h g^-1 at 2000 m A g^-1)and an impressive cycle performance(183.6 m A h g^-1 after 100 cycles at700 mA g^-1)between 0.3 and 3.8 V.Such excellent electrochemical performance is mainly contributed by its pseudocapacitive-dominated behavior,which brings fast electrode kinetics and robust structural stability to the whole electrode.展开更多
Dynamic manipulation of electromagnetic(EM)waves with multiple degrees of freedom plays an essential role in enhancing information processing.Currently,an enormous challenge is to realize directional terahertz(THz)hol...Dynamic manipulation of electromagnetic(EM)waves with multiple degrees of freedom plays an essential role in enhancing information processing.Currently,an enormous challenge is to realize directional terahertz(THz)holography.Recently,it was demonstrated that Janus metasurfaces could produce distinct responses to EM waves from two opposite incident directions,making multiplexed dynamic manipulation of THz waves possible.Herein,we show that thermally activated THz Janus metasurfaces integrating with phase change materials on the meta-atoms can produce asymmetric transmission with the designed phase delays.Such reconfigurable Janus metasurfaces can achieve asymmetric focusing of THz wave and directional THz holography with free-space image projections,and particularly the information can be manipulated via temperature and incident THz wave direction.This work not only offers a common strategy for realizing the reconfigurability of Janus metasurfaces,but also shows possible applications in THz optical information encryption,data storage,and smart windows.展开更多
Due to a large surface-to-volume ratio, the optoelectronic performance of low- dimensional semiconductor nanostructure-based photodetectors depends in principle on chemisorption/photodesorption at the exposed surface,...Due to a large surface-to-volume ratio, the optoelectronic performance of low- dimensional semiconductor nanostructure-based photodetectors depends in principle on chemisorption/photodesorption at the exposed surface, but practical examples that show such an effect are still unavailable. Some theoretical calculations have predicted that the {001} facets of In2O3 can effectively accumulate photogenerated holes under irradiation, providing a model material to examine whether the facet cutting of nanowires (NWs) can boost their optoelectronic performance. Herein, we present the design and construction of a novel nanowire-based photodetector using square In2O3 NWs with four exposed {001} crystal facets. The photodetector delivers excellent optoelectronic performance with excellent repeatability, fast response speed, high spectral responsivity (Rλ), and high external quantum efficiency (EQE). The Rλ and EQE values are as high as 4.8 × 10^6 A/W and 1.46 × 10^9%, respectively, which are larger than those of other popular semiconductor photodetectors. In addition, the square In2O3 NWs show hydrophobic wettability as manifested by a contact angle of 118° and a fast photoinduced reversible switching behavior is observed.展开更多
With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature soli...With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature solid phase reaction.Then the typical short tubular ternary thiophosphate SbPS_(4)compounded with graphene oxide(SbPS_(4)/GO)was successfully synthesized after ultrasonication and freeze-drying.SbPS_(4)shows a high theoretical specific capacity(1335 mAh/g)according to the conversion-alloying dual mechanisms.The unique short tube inserted in the spongy graphene structure of SbPS_(4)/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes,improving the sodium storage performance.Consequently,the tubular SbPS_(4)compounded with 10%GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g.The result indicates that SbPS_(4)/GO anode has a promising application potential for SIBs.展开更多
Carbon nitrides synthesized by thermal polycondensation of melamine at 700 ~C exhibit photoluminescence (PL) ranging from 400 to 650 nm. This broad PL is attributed to band to band transitions and bandtail transitio...Carbon nitrides synthesized by thermal polycondensation of melamine at 700 ~C exhibit photoluminescence (PL) ranging from 400 to 650 nm. This broad PL is attributed to band to band transitions and bandtail transitions of lone pair (LP) states of intra-tri-s-triazine and inter-tri-s-triazine nitrogens. The proposed PL mechanism is further confirmed by diffusion reflectance spectroscopy, as well as time-resolved and temperature-dependent PL. This intense fluorescence is stable at different pH and resistant to UV exposure, suggesting that this inexpensive broadband luminescent material could be significant for white- light-emitting (WLE) applications. Thus, quasi-WLE films and membranes with designed patterns are fabricated by embedding the carbon nitrides into polymethyl methacrylate. Moreover, even broader PL (400 to 740 nm) is acquired in com- posite films composed of carbon nitrides, further suggesting that the carbon nitrides are robust candidates for WLE.展开更多
Sodium metal anodes(SMAs)sufer from extremely low reversibility(<20%)in carbonate based clectrolytes-this piece of knowledge gained from previous studics has ruled out the application of carbonate solvents for sodi...Sodium metal anodes(SMAs)sufer from extremely low reversibility(<20%)in carbonate based clectrolytes-this piece of knowledge gained from previous studics has ruled out the application of carbonate solvents for sodium metal batteries.Here,we overturn this conclusion by incorporating fluoroethylene carbonate(FEC)as cosolvent that renders a Na plating/stripping fficiency of>95%with conventional NaPF。salt at a regular concentration(1.0M).The peculiar role of FEC is firstly.unraveled via its involvement into the solvation structure,where a threshold FEC concentration with a coordination number>1.2 is needed in guaranteeing high Na reversibility over the long-term.Specifially,by incorporating an average number of 1.2 FEC molecules into the primary Na*solvation sheath,lowest unoccupied molecular orbital(LUMO)levels of such Nat-FEC solvates undergo further decrease,with spin electrons residing either on the O=C 0(O)moiety of FEC or sharing between Na*and its C=:O bond,which ensures a prior FEC decomposition in passivating the Na surface against other carbonate molecules.Further,by adopting cryogenic tranmission electron microscopy(cryo-TEM),we found that the Na filaments grow into substantially larger diameter from-400nm to>1 pum with addition of FEC upon the threshold value.A.highly crstalline and much thiner(-40 nm)slid-electrolyte interphase(SED)is consequently observed to uniformly wrap the Na surface,in contrast to the severely corroded Na as retrieved from the blank electrolyte.The potence of FEC is further demonstrated in a series of"corrosive solvents"such as ethy!l acetate(EA)。trimethyl phosphate(TMP),and actonitrile(AN)enabling highly reversible SMAs in the otherwise unusable solvent systems.展开更多
Dual ion batteries(DIBs) exhibit broad application prospects in the field of electrical energy storage(EES)devices with excellent properties,such as high voltage,high energy density,and low cost.In the graphitebased D...Dual ion batteries(DIBs) exhibit broad application prospects in the field of electrical energy storage(EES)devices with excellent properties,such as high voltage,high energy density,and low cost.In the graphitebased DIBs,high voltage is needed to store enough anions with the formation of anion intercalation compound XCn(X=AlCl4-,PF6-,TFSI-,etc.).Hence,it is difficult for graphite-based DIBs to match proper anodes and electrolytes.Here,an Se/graphene composite is prepared via a convenient method,and assembled into a dual-ion full battery(DIFB) as anode with graphite cathode and 1 mol/L NaPF6 in EC:EMC(1:1,v:v).This DIFB has achieved a high discharge capacity of 75.9 mAh/g and high medium output voltage of 3.5 V at 0.1 A/g.Actually,the suitable anode materials,such as the present Se/graphene composite,are extremely important for the development and application of graphite-based DIBs.This study is enlightening for the design of future low-cost EES devices including graphite-based DIBs.展开更多
基金the financial support from the National Key R&D Program of China(Grant No.2023YFE0202000)the National Natural Science Foundation of China(Grant No.52102213)+1 种基金Natural Science Foundation of Jilin Province(Grant No.20230101128JC)Double-Thousand Talents Plan of Jiangxi Province(jxsq2023102005)
文摘KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries.
基金the National Natural Science Foundation of China(No.52173246)the Science and Technology Planning Project of Guangzhou City,China(No.2023B03J1278)。
文摘The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries.
基金supported by the National Key R&D Program of China(No.2021YFB2800700)National Natural Science Foundation of China(Nos.12274210,62227820,and 12174183)+1 种基金Partial support is from NSF of Jiangsu Province(No.BK20220006)the Fundamental Research Funds for the Central Universities and Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves。
文摘Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has garnered significant interest due to its remarkable properties such as negative/zero thermal expansion and magnetocaloric effects.However,when utilized as hydrogen evolution catalysts,it encounters large challenge resulting from excessively strong/weak interactions with adsorbed H on Mn/Cu active sites,which leads to low HER activity.In this study,we introduce an asymmetric orbital hybridization strategy in Zn-doped Cu_(1-x)Zn_(x)NMn_(3)by leveraging the localization of Zn electronic states to reconfigure the electronic structures of Cu and Mn,thereby reducing the energy barrier for water dissociation and optimizing Cu and Mn active sites for hydrogen adsorption and H_(2)production.Electrochemical evaluations reveal that Cu_(0.85)Zn_(0.15)NMn_(3)with x=0.15 demonstrates exceptional electrocatalytic activity in alkaline electrolytes.A low overpotential of 52 mV at 10 mA cm^(-2)and outstanding stability over a 150-h test period are achieved,surpassing commercial Pt/C.This research offers a novel strategy for enhancing HER performance by modulating asymmetric hybridization of electron orbitals between multiple metal atoms within a material structure.
基金financially supported by the National Natural Science Foundation of China(No.52173246)the 111 Project(B13013).
文摘The number of lithium-ion batteries(LIBs)is steadily increasing in order to meet the ever-growing demand for sustainable energy and a high quality of life for humankind.At the same time,the resulting large number of LIB waste certainly poses safety hazards if it is not properly disposed of and will seriously harm the environment due to its inherent toxicity due to the use of toxic substances.Moreover,the consumption of many scarce precious metal resources is behind the mass production of batteries.In the light of severe environmental,resources,safety and recycling problems,recycling spent LIBs have become an essential urgently needed action to achieve sustainable social development.This review therefore critically analyses the value and the need for recycling of spent LIBs from a variety of resources and the environment.A range of existing technologies for recycling and reusing spent LIBs,such as pretreatment,pyrometallurgy,hydrometallurgy,and direct recycled methods,is subsequently summarized exclusively.In addition,the benefits and problems of the methods described above are analyzed in detail.It also introduces recycling progress of other LIB components,such as anodes,separators,and electrolytes,as well as the high-value cathode.Finally,the prospects for recycling LIBs are addressed in four ways(government,users,battery manufacturers,and recyclers).This review should contribute to the development of the recycling of used LIBs,particularly in support of industrialization and recycling processes.
基金supported by the Open-Fund of WNLO (Grant No.2018WNLOKF027)the Hubei Key Laboratory of Intelligent Robot in Wuhan Institute of Technology (Grant No.HBIRL 202003).
文摘Medical image segmentation plays a crucial role in clinical diagnosis and therapy systems,yet still faces many challenges.Building on convolutional neural networks(CNNs),medical image segmentation has achieved tremendous progress.However,owing to the locality of convolution operations,CNNs have the inherent limitation in learning global context.To address the limitation in building global context relationship from CNNs,we propose LGNet,a semantic segmentation network aiming to learn local and global features for fast and accurate medical image segmentation in this paper.Specifically,we employ a two-branch architecture consisting of convolution layers in one branch to learn local features and transformer layers in the other branch to learn global features.LGNet has two key insights:(1)We bridge two-branch to learn local and global features in an interactive way;(2)we present a novel multi-feature fusion model(MSFFM)to leverage the global contexture information from transformer and the local representational features from convolutions.Our method achieves state-of-the-art trade-off in terms of accuracy and efficiency on several medical image segmentation benchmarks including Synapse,ACDC and MOST.Specifically,LGNet achieves the state-of-the-art performance with Dice's indexes of 80.15%on Synapse,of 91.70%on ACDC,and of 95.56%on MOST.Meanwhile,the inference speed attains at 172 frames per second with 224-224 input resolution.The extensive experiments demonstrate the effectiveness of the proposed LGNet for fast and accurate for medical image segmentation.
基金supported by the National Natural Science Foundation of China(No.91963118 and 52102213)Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013).
文摘The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible.
基金supported by NSFC(22035001,21574018,51433003)the National Science and Engineering Council of Canada,and the Fundamental Research Funds for the Central Universities(2412019ZD002)。
文摘Self-standing carbon-based substrates with satisfied structural stability and property adjustability have promising applications in flexible lithium(Li)metal batteries(FLMBs).Current strategies for modifying carbon materials are normally carried out on powder carbon,and very few of them are suitable for self-standing carbon substrates.Herein,a pore-forming strategy based on the redox chemistry of metallic oxide nanodots is developed to prepare two porous carbon substrates for anode and cathode.Starting with cotton cloth,the resulting hollow carbon fibers substrate with nanopores effectively prevents from Li dendrites formation and large volume change in lithium metal anode(LMA).Simulations indicate that the porous structure leads to homogeneous ion flux,Li-ion concentration,and electric field during Li deposition.Li symmetrical cell based on this substrate remains stable for 8300 h with an ultralow voltage hysteresis of 9 mV.Via a similar route,porous carbon cloth substrate is obtained for subsequently seeding V_(2)O_(5)nanowires to prepare the cathode.The assembled FLMBs pouch cell delivers a capacity of 8.2 mAh with a high capacity retention of~100%even under dramatic deformation.The demonstrated strategy has far-reaching potential in preparing free-standing porous carbon-based materials for flexible energy storage devices.
文摘[Objectives]This study was conducted to select media suitable for proliferation,differentiation and rooting of Cymbidium hybridum"Huangjinjia".[Methods]The lateral buds and protocorms of the new variety C.hybridum"Huangjinjia"were used as materials to explore the effects of different concentrations of 6-BA and NAA on protocorm proliferation and rooting.[Results]The optimal medium for protocorm propagation was 1/2 MS+6-BA 1.0 mg/L+NAA0.5 mg/L+potato 50 g/L+sucrose 20 g/L,in which the protocorms multiplied easily and grew rapidly.The optimal medium for inducing adventitious buds was1/2 MS+6-BA 1.5 mg/L+NAA 0.3 mg/L+sucrose 30 g/L+banana 25 g/L+apple 25 g/L+activated carbon 1.0 g/L,in which the induction rate of adventitious buds reached 335%.The optimal medium for rooting was 1/2 MS+NAA 0.5 mg/L+sucrose 25 g/L+banana 75 g/L+apple 25 g/L+activated carbon1.0 g/L,in which the average root length was 3.0 cm,the average number of roots was 2.6,and plantlets had green leaves,thick roots and suitable plant height.[Conclusions]This study provides a theoretical basis and reference for the establishment of a rapid propagation system using lateral buds.
文摘Senile male, physically fit at usual, he died suddenly without any clinical symptoms. By autopsy dissection, it was found that large amount of bleeding was presented in pericardial cavity, the abdominal cavity and thoracic cavity had a small amount of hemorrhage, partial pancrea tissue had coagulation necrosis accompanied with infiltration of neutrophile granulocyte and degeneration and necrosis of liver cell accompanied with acute or chronic inflammation cell infiltration. Laboratory examination of the patient when he was alive suggested that liver function and coagulation function had obstacles, there was not any timely clinical process, and he died suddenly. Autopsy examination results suggested that acute pancreatitis caused a large quantity of bleeding in pericardial cavity, which led to cardiac tamponade and it cause acute circulation failure, which initiated cardiac arrest and then death. Coronary heart disease may exert certain facilitation effect in the death process. Patients with pancreatitis, especially the senile and pancreatitis patients with coronary artery disease, should be evaluated and prevented ahead of schedule, for those patients who had coma suddenly, it should be thought that it had possibility of combining with hemorrhage in the interior of pericardial cavity, the patient's doctor should try his or her best to reduce death rate.
基金the National Key Research and Development Program of China(grant No.2023YFE0202000)National Natural Science Foundation of China(grant No.52102213)Science Technology Program of Jilin Province(grant No.20230101128JC).
文摘The demand for large-scale energy storage is increasing due to the decreasing non-renewable resources and deteriorating environmental pollution.Developing rechargeable batteries with high energy density and long cycle performance is an ideal choice to meet the demand of energy storage system.The development of excellent electrode particles is of great significance in the commercialization of nextgeneration batteries.The ideal electrode particles should balance raw material reserves,electrochemical performance,price and environmental protection.Among them,the development of electrode particulate materials with excellent electrochemical properties is the top priority at present.In this review,the typical researches of electrode materials are summarized in terms of crystal structure,morphology,pore structure,surface and interface regulation.Firstly,the structural characteristics and improvement methods of transition metal oxides,polyanionic compounds,Prussian blue and their analogues are introduced.Then,the different effects of particulate morphology,pore,surface and interface structure on the performance of electrode materials are discussed.For designing high-performance electrode materials,preparation route should be set according to the particle properties of the materials and the synergistic effect of various optimization methods should be adopted.At the same time,in addition to the electrode materials,other components of the rechargeable batteries,such as current collector,separator and electrolytes,should be optimized to improve the overall performance of the batteries.This review would provide important guiding principle for designing high-performance electrode particulate materials.
基金financially supported by the National Natural Science Foundation of China (No.91963118)Fundamental Research Funds for the Central Universities (No.2412019QD013)+1 种基金the 111 Project (No.B13013)the support from China Postdoctoral Science Foundation (No.2019M661191)。
文摘Metal organic framework(MOF) has been confirmed as the promising precursor to develop the conve rsion-typed anode mate rials of sodium-ion batteries(SIBs) because of the tunable structure design and simple functional modification.Here,we prepare the ultrasmall Ni_(3)S_(2) nanocrystals embedded into N-doped porous carbon nanoparticles using the scalable Ni-MOF as precursor(denoted as Ni_(3)S_(2)@NPC).The ultrasmall size of Ni_(3)S_(2) can work for accelerated electro n/ion transfer to facilitate the electrochemical reaction kinetics.Moreover,the robust conductivity network originated from N-doped porous carbon nanoparticles can not only improve the electron conductivity,but also enhance the electrode integrity and stability of the electrode/electrolyte interface.In addition,the N heteroatoms provide extra Na storage sites.Accordingly,the electrode delivers the obviously competitive capacities and high-power output with respect to the currently reported Ni_(3)S_(2)/C composites.This study provides a scalable and universal strategy to develop the advanced transition metal sulfides for practically feasible SIBs.
基金financially supported by the National Natural Science Foundation of China (21873018, 21573036 and 21274017)the open project of Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis (130028655)
文摘Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is an ideal electrode for fast energy storage on account of its low cost and high theoretical capacity.Herein,Fe1-xS nanosheet wrapped by nitrogen-doped carbon(Fe1-xS@NC)is engineered through a post-sulfidation strategy using Fe-based metal-organic framework(Fe-MOF)as the precursor.The obtained Fe1-xS@NC agaric-like structure can well shorten the charge diffusion pathway,and significantly enhance the ionic/electronic conductivities and the reaction kinetics.As expected,the Fe1-xS@NC electrode,as a prospective SIB anode,delivers a desirable capacity up to 510.2 mA h g^-1 at a high rate of8000 mA g^-1.Additionally,even operated at low temperatures of 0 and-25°C,high reversible capacities of 387.1 and 223.4 mA h g^-1 can still be obtained at 2000 mA g^-1,respectively,indicating its huge potential use at harsh temperatures.More noticeably,the full battery made by the Fe1-xS@NC anode and Na3 V2(PO4)2 O2 F cathode achieves a remarkable rate capacity(186.8 mA h g^-1 at 2000 m A g^-1)and an impressive cycle performance(183.6 m A h g^-1 after 100 cycles at700 mA g^-1)between 0.3 and 3.8 V.Such excellent electrochemical performance is mainly contributed by its pseudocapacitive-dominated behavior,which brings fast electrode kinetics and robust structural stability to the whole electrode.
基金This study was supported by the National Key Research and Development Program of China(2017YFA0700202,2021YFB2800701)National Nature Science Foundation of China(62288101,91963128,62071215,62071217,62027807,62035014)Fundamental Research Funds for the Central Universities,and Research Fund for Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves.J.W.acknowledges the support from Xiaomi Young Scholar Program.
文摘Dynamic manipulation of electromagnetic(EM)waves with multiple degrees of freedom plays an essential role in enhancing information processing.Currently,an enormous challenge is to realize directional terahertz(THz)holography.Recently,it was demonstrated that Janus metasurfaces could produce distinct responses to EM waves from two opposite incident directions,making multiplexed dynamic manipulation of THz waves possible.Herein,we show that thermally activated THz Janus metasurfaces integrating with phase change materials on the meta-atoms can produce asymmetric transmission with the designed phase delays.Such reconfigurable Janus metasurfaces can achieve asymmetric focusing of THz wave and directional THz holography with free-space image projections,and particularly the information can be manipulated via temperature and incident THz wave direction.This work not only offers a common strategy for realizing the reconfigurability of Janus metasurfaces,but also shows possible applications in THz optical information encryption,data storage,and smart windows.
基金This work was supported by the National Basic Research Program of China (Nos. 2014CB339800 and 2013CB932901) and National Natural Science Foundation of China (Nos. 11374141, 61264008, 21203098 and 21375067). Partial support was provided by City University of Hong Kong Applied Research Grant (ARG) (No. 9667122).
文摘Due to a large surface-to-volume ratio, the optoelectronic performance of low- dimensional semiconductor nanostructure-based photodetectors depends in principle on chemisorption/photodesorption at the exposed surface, but practical examples that show such an effect are still unavailable. Some theoretical calculations have predicted that the {001} facets of In2O3 can effectively accumulate photogenerated holes under irradiation, providing a model material to examine whether the facet cutting of nanowires (NWs) can boost their optoelectronic performance. Herein, we present the design and construction of a novel nanowire-based photodetector using square In2O3 NWs with four exposed {001} crystal facets. The photodetector delivers excellent optoelectronic performance with excellent repeatability, fast response speed, high spectral responsivity (Rλ), and high external quantum efficiency (EQE). The Rλ and EQE values are as high as 4.8 × 10^6 A/W and 1.46 × 10^9%, respectively, which are larger than those of other popular semiconductor photodetectors. In addition, the square In2O3 NWs show hydrophobic wettability as manifested by a contact angle of 118° and a fast photoinduced reversible switching behavior is observed.
基金the financial support from the National Natural Science Foundation of China(Nos.91963118,51801030)supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University,No.2020004)。
文摘With the in-depth research of sodium-ion batteries(SIBs),the development of novel sodium-ion anode material has become a top priority.In this work,tube cluster-shaped SbPS_(4)was synthesized by a high-temperature solid phase reaction.Then the typical short tubular ternary thiophosphate SbPS_(4)compounded with graphene oxide(SbPS_(4)/GO)was successfully synthesized after ultrasonication and freeze-drying.SbPS_(4)shows a high theoretical specific capacity(1335 mAh/g)according to the conversion-alloying dual mechanisms.The unique short tube inserted in the spongy graphene structure of SbPS_(4)/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes,improving the sodium storage performance.Consequently,the tubular SbPS_(4)compounded with 10%GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g.The result indicates that SbPS_(4)/GO anode has a promising application potential for SIBs.
文摘Carbon nitrides synthesized by thermal polycondensation of melamine at 700 ~C exhibit photoluminescence (PL) ranging from 400 to 650 nm. This broad PL is attributed to band to band transitions and bandtail transitions of lone pair (LP) states of intra-tri-s-triazine and inter-tri-s-triazine nitrogens. The proposed PL mechanism is further confirmed by diffusion reflectance spectroscopy, as well as time-resolved and temperature-dependent PL. This intense fluorescence is stable at different pH and resistant to UV exposure, suggesting that this inexpensive broadband luminescent material could be significant for white- light-emitting (WLE) applications. Thus, quasi-WLE films and membranes with designed patterns are fabricated by embedding the carbon nitrides into polymethyl methacrylate. Moreover, even broader PL (400 to 740 nm) is acquired in com- posite films composed of carbon nitrides, further suggesting that the carbon nitrides are robust candidates for WLE.
基金sponsored by the National Natural Science Foundation of China(NSFC Nos.21975186,51632001,and 22005334)supports from Natural Science Foundation of Beijing(grant No.Z200013).
文摘Sodium metal anodes(SMAs)sufer from extremely low reversibility(<20%)in carbonate based clectrolytes-this piece of knowledge gained from previous studics has ruled out the application of carbonate solvents for sodium metal batteries.Here,we overturn this conclusion by incorporating fluoroethylene carbonate(FEC)as cosolvent that renders a Na plating/stripping fficiency of>95%with conventional NaPF。salt at a regular concentration(1.0M).The peculiar role of FEC is firstly.unraveled via its involvement into the solvation structure,where a threshold FEC concentration with a coordination number>1.2 is needed in guaranteeing high Na reversibility over the long-term.Specifially,by incorporating an average number of 1.2 FEC molecules into the primary Na*solvation sheath,lowest unoccupied molecular orbital(LUMO)levels of such Nat-FEC solvates undergo further decrease,with spin electrons residing either on the O=C 0(O)moiety of FEC or sharing between Na*and its C=:O bond,which ensures a prior FEC decomposition in passivating the Na surface against other carbonate molecules.Further,by adopting cryogenic tranmission electron microscopy(cryo-TEM),we found that the Na filaments grow into substantially larger diameter from-400nm to>1 pum with addition of FEC upon the threshold value.A.highly crstalline and much thiner(-40 nm)slid-electrolyte interphase(SED)is consequently observed to uniformly wrap the Na surface,in contrast to the severely corroded Na as retrieved from the blank electrolyte.The potence of FEC is further demonstrated in a series of"corrosive solvents"such as ethy!l acetate(EA)。trimethyl phosphate(TMP),and actonitrile(AN)enabling highly reversible SMAs in the otherwise unusable solvent systems.
基金financial support by the National Natural Science Foundation of China(No.91963118)Fundamental Research Funds for the Central Universities(No.2412019ZD010)。
文摘Dual ion batteries(DIBs) exhibit broad application prospects in the field of electrical energy storage(EES)devices with excellent properties,such as high voltage,high energy density,and low cost.In the graphitebased DIBs,high voltage is needed to store enough anions with the formation of anion intercalation compound XCn(X=AlCl4-,PF6-,TFSI-,etc.).Hence,it is difficult for graphite-based DIBs to match proper anodes and electrolytes.Here,an Se/graphene composite is prepared via a convenient method,and assembled into a dual-ion full battery(DIFB) as anode with graphite cathode and 1 mol/L NaPF6 in EC:EMC(1:1,v:v).This DIFB has achieved a high discharge capacity of 75.9 mAh/g and high medium output voltage of 3.5 V at 0.1 A/g.Actually,the suitable anode materials,such as the present Se/graphene composite,are extremely important for the development and application of graphite-based DIBs.This study is enlightening for the design of future low-cost EES devices including graphite-based DIBs.