Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact...Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.展开更多
Several important drugs and nutritional supplements are limited by their lack of bioavailability.Nanomaterials display unique beneficial properties that might help improve the bioavailability of drugs and nutritional ...Several important drugs and nutritional supplements are limited by their lack of bioavailability.Nanomaterials display unique beneficial properties that might help improve the bioavailability of drugs and nutritional supplements.Unfortunately,nanomaterials produced from synthetic polymers and metals may have similar difficulties with bioavailability and toxicity.Naturally occurring biopolymers are biodegradable and non-toxic and are adaptable to the synthesis of nanoparticles.Drugs and other substances can be encapsulated or embedded in such particles with an increase in bioavailability.The search for biodegradable nanomaterials is an active research field.This review summarizes the research on nanocrystalline cellulose,starch,lignin,and other biological and environment-friendly nanocomposites which are commonly used as nanocarriers for drugs and nutrients.Further,prospects for the use of biodegradable nanomaterials in targeted therapy,including environmentally responsive therapy,are discussed.展开更多
Disposable hygiene products have evolved into the important parts for millions of people around the world,enhancing the convenience of daily lives.However,development of the disposable hygiene products is restricted b...Disposable hygiene products have evolved into the important parts for millions of people around the world,enhancing the convenience of daily lives.However,development of the disposable hygiene products is restricted by unsustainable production technology,complicated operation process,and poor liquid absorption performance of the absorbent core.Herein,integrated and three-dimensional(3D)multifunctional superabsorbent nonwovens with liquid-triggered fragrance release was prepared via green,fast and scalable multi efect hot-air anchoring method which physically crosslinking the joint thermobonding fbers and anchoring fragrance microcapsules/super absorbent polymer(SAP)onto adjacent thermo-bonding fbers simultaneously.The resulting composite nonwovens could three-dimensionally absorb water 33.14 times of its own weight without gel blockage between SAP,and correspondingly release increased intensity fragrance along with enhancing amount of water absorption.Absorption rate t1 and t2 is 83.62%and 50.62%higher than the commercial specimen respectively,and the air permeability is increased by 226.88%compared with the commercial specimen.The superabsorbent nonwovens with controllable fragrance release and odorant synergistic has the potential to be practically applied to functional textiles felds because of the excellent liquid absorption and controlled fragrance release performance,and is easy to be produced on a sustainable,pollution-free and large-scale industrial production.展开更多
基金China Postdoctoral Science Foundation(2020M681125)National Natural Science Foundation of China(32272254,31901618)Collaborative Innovation Center of Fragrance Flavour and Cosmetics.
文摘Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.
基金National Natural Science Foundation of China(31901618)China Postdoctoral Science Foundation(2020M681125)Open Project Fund from Shanghai Collaborative Innovation Center for Aroma,Perfume and Cosmetics Research,and the Estabalishment of the Tabocco Product and Technology Integrated Innovation System for the Southeastern Asia Tobacco Market(2018IA057).
文摘Several important drugs and nutritional supplements are limited by their lack of bioavailability.Nanomaterials display unique beneficial properties that might help improve the bioavailability of drugs and nutritional supplements.Unfortunately,nanomaterials produced from synthetic polymers and metals may have similar difficulties with bioavailability and toxicity.Naturally occurring biopolymers are biodegradable and non-toxic and are adaptable to the synthesis of nanoparticles.Drugs and other substances can be encapsulated or embedded in such particles with an increase in bioavailability.The search for biodegradable nanomaterials is an active research field.This review summarizes the research on nanocrystalline cellulose,starch,lignin,and other biological and environment-friendly nanocomposites which are commonly used as nanocarriers for drugs and nutrients.Further,prospects for the use of biodegradable nanomaterials in targeted therapy,including environmentally responsive therapy,are discussed.
基金This research was supported by Capacity building project of local universities Science and Technology Commission of Shanghai Municipality(19090503500)National Natural Science Foundation of China(51803028,2018)+4 种基金Shanghai Gaofeng&Gaoyuan Project for University Academic Program Development,China Postdoctoral Science Foundation(2020M681125)DHU Distinguished Young Professor Programthe Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University(CUSF-DH-D-2021020).
文摘Disposable hygiene products have evolved into the important parts for millions of people around the world,enhancing the convenience of daily lives.However,development of the disposable hygiene products is restricted by unsustainable production technology,complicated operation process,and poor liquid absorption performance of the absorbent core.Herein,integrated and three-dimensional(3D)multifunctional superabsorbent nonwovens with liquid-triggered fragrance release was prepared via green,fast and scalable multi efect hot-air anchoring method which physically crosslinking the joint thermobonding fbers and anchoring fragrance microcapsules/super absorbent polymer(SAP)onto adjacent thermo-bonding fbers simultaneously.The resulting composite nonwovens could three-dimensionally absorb water 33.14 times of its own weight without gel blockage between SAP,and correspondingly release increased intensity fragrance along with enhancing amount of water absorption.Absorption rate t1 and t2 is 83.62%and 50.62%higher than the commercial specimen respectively,and the air permeability is increased by 226.88%compared with the commercial specimen.The superabsorbent nonwovens with controllable fragrance release and odorant synergistic has the potential to be practically applied to functional textiles felds because of the excellent liquid absorption and controlled fragrance release performance,and is easy to be produced on a sustainable,pollution-free and large-scale industrial production.