Objective:To explore the clinical method and effect of 3D printing in the treatment of cerebral aneurysms.Methods:The authors research work on the hospital,work time in February 2019-February 2020,this study selected ...Objective:To explore the clinical method and effect of 3D printing in the treatment of cerebral aneurysms.Methods:The authors research work on the hospital,work time in February 2019-February 2020,this study selected patients of cerebral aneurysms,this period are selected for treatment of 100 cases of patients,randomly divided into two groups,a group to give simple intervention,named as the control group,another group for the interventional therapy under the guidance of 3 D printing,named as experimental group,analyze the effect of two groups of patients with clinical intervention.Results:The length of hospital stay in the experimental group was shorter than that in the control group.Meanwhile,the incidence of complications and adverse reactions in the experimental group and the control group were 6.00%and 18.00%,the experimental group was better(P<0.05).Conclusion:3D printing technology can be applied in the treatment of patients with cerebral aneurysms to provide guidance for interventional surgical treatment.It has significant effect,can reduce the incidence complications in patients,has significant clinical effect,and can be popularized.展开更多
In this paper, a HTLV-I infection model with two delays is considered. It is found that the dynamics of this model are determined by two threshold parameters R0 and R1, basic reproduction numbers for viral infection a...In this paper, a HTLV-I infection model with two delays is considered. It is found that the dynamics of this model are determined by two threshold parameters R0 and R1, basic reproduction numbers for viral infection and for CTL response, respectively. If R0 〈 1, the infection-free equilibrium P0 is globally asymptotically stable. If R1 〈 1 〈 R0, the asymptomatic-carrier equilibrium P1 is globally asymptotically stable. If R1 〉 1, there exists a unique HAM/TSP equilibrium P2. The stability of P2 is changed when the second delay T2 varies, that is there exist stability switches for P2.展开更多
文摘Objective:To explore the clinical method and effect of 3D printing in the treatment of cerebral aneurysms.Methods:The authors research work on the hospital,work time in February 2019-February 2020,this study selected patients of cerebral aneurysms,this period are selected for treatment of 100 cases of patients,randomly divided into two groups,a group to give simple intervention,named as the control group,another group for the interventional therapy under the guidance of 3 D printing,named as experimental group,analyze the effect of two groups of patients with clinical intervention.Results:The length of hospital stay in the experimental group was shorter than that in the control group.Meanwhile,the incidence of complications and adverse reactions in the experimental group and the control group were 6.00%and 18.00%,the experimental group was better(P<0.05).Conclusion:3D printing technology can be applied in the treatment of patients with cerebral aneurysms to provide guidance for interventional surgical treatment.It has significant effect,can reduce the incidence complications in patients,has significant clinical effect,and can be popularized.
基金Acknowledgments The authors would like to thank the reviewers' constructive suggestions which have improved the presentation of the paper. This research is supported by National Natural Science Foundation of China (No. 11371111), the Research Fund for the Doctoral Program of Higher Education of China (No. 20122302110044) and Shandong Provincial Natural Science Foundation, China (No. ZR2013AQ023).
文摘In this paper, a HTLV-I infection model with two delays is considered. It is found that the dynamics of this model are determined by two threshold parameters R0 and R1, basic reproduction numbers for viral infection and for CTL response, respectively. If R0 〈 1, the infection-free equilibrium P0 is globally asymptotically stable. If R1 〈 1 〈 R0, the asymptomatic-carrier equilibrium P1 is globally asymptotically stable. If R1 〉 1, there exists a unique HAM/TSP equilibrium P2. The stability of P2 is changed when the second delay T2 varies, that is there exist stability switches for P2.