Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wast...Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wastes is expected to offer sustainable solutions to waste recycling while enhancing the performance of roads.This review provides an extensive analysis of the recycling of three main types of solid wastes for road engineering purposes:industrial solid waste,infrastructure solid waste,and municipal life solid waste.Industrial solid wastes suitable for road engineering generally include coal gangue,fly ash,blast furnace slag,silica fume,and steel slag,etc.Infrastructure solid wastes recycled in road engineering primarily consist of construction&demolition waste,reclaimed asphalt pavements,and recycled cement concrete.Furthermore,recent exploration has extended to the utilization of municipal life solid wastes,such as incinerated bottom ash,glass waste,electronics waste,plastic waste,and rubber waste in road engineering applications.These recycled solid wastes are categorized into solid waste aggregates,solid waste cements,and solid waste fillers,each playing distinct roles in road infrastructure.Roles of solid waste acting aggregates,cements,and fillers in road infrastructures were fully investigated,including their pozzolanic properties,integration effects to virgin materials,modification or enhancement solutions,engineering performances.Utilization of these materials not only addresses the challenge of waste management but also offers environmental benefits aiming carbon neutral and contributes to sustainable infrastructure development.However,challenges such as variability in material properties,environmental impact mitigation,secondary pollution to environment by leaching,and concerns regarding long-term performance need to be further addressed.Despite these challenges,the recycled solid wastes hold immense potential in revolutionizing road construction practices and fostering environmental stewardship.This review delves into a bird’seye view of the utilization of recycled solid wastes in road engineering,highlighting advances,benefits,challenges,and future prospects.展开更多
The construction of a lunar base and habitation on the Moon has always been on researchers’minds.Building materials used in in situ lunar resources are of great significance for saving expensive space freight.In this...The construction of a lunar base and habitation on the Moon has always been on researchers’minds.Building materials used in in situ lunar resources are of great significance for saving expensive space freight.In this study,a new type of lunar soil simulant named Beihang(BH)-1 was developed.The chemical mineral composition and microstructure of BH-1 closely resemble those of real lunar soil,as verified by X-ray fluorescence spectroscopy(XRF),X-ray diffraction(XRD),scanning electron microscopy(SEM),and reflectance spectra.This research also synthesized a geopolymer based on BH-1 cured at simulated lunar atmospheric conditions.We also investigated the effect of supplementing aluminum(Al)sources on the enhancement of geopolymer strength based on BH-1.The rheological behavior of alkali-activated BH-1 pastes was determined for workability.XRF,XRD,Fourier transform infrared spectroscopy,SEM coupled with energy dispersive spectroscopy,and 27Al magic angle spinningnuclear magnetic resonance were used to characterize resulting geopolymers.Rheological test findings showed that the rheology of BH-1 pastes fits the Herschel–Bulkley model,and they behaved like a shear-thinning fluid.The results showed that the 28-day compressive strength of the BH-1 geopolymer was improved by up to 100.8%.Meanwhile,the weight of additives required to produce per unit strength decreased,significantly reducing the mass of materials transported from the Earth for the construction of lunar infrastructure and saving space transportation costs.Microscopic analyses showed that the mechanism to improve the mechanical properties of the BH-1 geopolymer by adding an additional Al source enhances the replacement of silicon atoms by Al atoms in the silicon–oxygen group and generates a more complete and dense amorphous gel structure.展开更多
The presence of water films on a runway surface presents a risk to the landing of aircraft.The tire of the aircraft is separated from the runway due to a hydrodynamic force exerted through the water film,a phenomenon ...The presence of water films on a runway surface presents a risk to the landing of aircraft.The tire of the aircraft is separated from the runway due to a hydrodynamic force exerted through the water film,a phenomenon called hydroplaning.Although a lot of numerical investigations into hydroplaning have been conducted,only a few have considered the impact of the runway permeability.Hence,computational problems,such as excessive distortion and computing efficiency decay,may arise with such numerical models when dealing with the thin water film.This paper presents a numerical model comprising of the tire,water film,and the interaction with the runway,applying a mathematical model using the smoothed particle hydrodynamics and finite element(SPH-FE)algorithm.The material properties and geometric features of the tire model were included in the model framework and water film thicknesses from 0.75 mm to 7.5 mm were used in the numerical simulation.Furthermore,this work investigated the impacts of both surface texture and the runway permeability.The interaction between tire rubber and the rough runway was analyzed in terms of frictional force between the two bodies.The SPH-FE model was validated with an empirical equation proposed by the National Aeronautics and Space Administration(NASA).Then the computational efficiency of the model was compared with the traditional coupled Eulerian-Lagrangian(CEL)algorithm.Based on the SPH-FE model,four types of the runway(Flat,SMA-13,AC-13,and OGFC-13)were discussed.The simulation of the asphalt runway shows that the SMA-13,AC-13,and OGFC-13 do not present a hydroplaning risk when the runway permeability coefficient exceeds 6%.展开更多
Using an in situ lunar regolith as a construction material in combination with 3D printing not only reduces the weight of materials carried from the Earth but also improves the automation of lunar infrastructure const...Using an in situ lunar regolith as a construction material in combination with 3D printing not only reduces the weight of materials carried from the Earth but also improves the automation of lunar infrastructure construction.This study aims to improve the printability of a geopolymer based on a BH-1 lunar regolith simulant,including the extrudability,open time,and buildability,by controlling the temperature and adding admixtures.Rheological parameters were used to represent printability with different water-to-binder ratios,printing temperatures,and contents of additives.The mechanical properties of the hardening geopolymer with different filling paths and loading directions were tested.The results show that heating the printed filaments with a water-to-binder ratio of 0.32 at 80°C can adjust the printability without adding any additive,which can reduce the construction cost of lunar infrastructure.The printability of the BH-1 geopolymer can also be improved by adding 0.3%Attagel-50 and 0.5%polypropylene fiber by mass at a temperature of 20℃to cope with the changeable environmental conditions on the Moon.After curing under a simulated lunar environment,the 72-h flexural and compressive strengths of the geopolymer specimens reach 4.1 and 48.1 MPa,respectively,which are promising considering that the acceleration of gravity on the Moon is 1/6 of that on the Earth.展开更多
Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges.In the past 10 years,the pavement infrastructure strongly supports the rapid development of the global so...Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges.In the past 10 years,the pavement infrastructure strongly supports the rapid development of the global social economy.New theories,new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem.Because of actual coupled behaviors of traffic and environmental conditions,predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis.In order to summarize the current and determine the future research of pavement engineering,Journal of Traffic and Transportation Engineering(English Edition)has launched a review paper on the topic of"New innovations in pavement materials and engineering:A review on pavement engineering research 2021".Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering,this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world.The content includes asphalt binder performance and modeling,mixture performance and modeling of pavement materials,multi-scale mechanics,green and sustainable pavement,and intelligent pavement.Overall,this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.展开更多
In this study,a new GVS(Ground Volcanic Scoria)lunar regolith simulant was produced.The similarity between GVS and lunar soil was proved by comparison with Apollo lunar soil samples and other commercial lunar soil sim...In this study,a new GVS(Ground Volcanic Scoria)lunar regolith simulant was produced.The similarity between GVS and lunar soil was proved by comparison with Apollo lunar soil samples and other commercial lunar soil simulants.Then,GVS lunar regolith simulant was investigated as the source material for preparing geopolymer to produce building material for lunar colony construction.To study the possibility of preparing geopolymer from GVS lunar regolith simulant and the optimum activator formulation as well as the optimum curing conditions,alkaline activated GVS slurries with different mixing ratios based on an orthogonal test scheme were prepared.The geopolymer products based on GVS were characterized by flexural strength test,compressive strength test,X-ray fluorescence(XRF),X-ray diffraction(XRD),Fourier Transform Infrared Spectroscopy(FTIR),Scanning Electron Microscope coupled with Energy Dispersive Spectroscopy(SEM-EDS),29Si magic angle spinning-nuclear magnetic resonance(29Si MAS-NMR),and 27Al MAS-NMR.The experimental results indicate that changes in the mass ratio of sodium hydroxide and GVS and curing temperature have the most significant influence on the flexural strength and compressive strength,respectively.The GVS-based geopolymer can obtain the highest 28-day compressive strength and 28-day flexural strength up to 75.6 MPa and 6.3 MPa.Microstructural results imply that the changes of Si occurring in a variety of environments that explaining preliminarily about the reaction mechanism of GVS-based geopolymer.This study approves the feasibility of making a geopolymer derived from the GVS lunar regolith simulant and the potential utilization of geopolymer based on lunar regolith for construction of the lunar colony in future space exploration.展开更多
With a rapid development of intelligent transportation systems(ITSs),traffic monitoring has gained increasing attention.Here,we present a new kind of waterbomb-origami-inspired triboelectric nanogenerator(WO-TENG)as a...With a rapid development of intelligent transportation systems(ITSs),traffic monitoring has gained increasing attention.Here,we present a new kind of waterbomb-origami-inspired triboelectric nanogenerator(WO-TENG)as a traffic monitoring system to integrate smart pavement with lightweight,cost-effective,excellent deformability,flexibility,and self-rebounding properties.The electrical performance is significantly improved by more than 67%compared with current origami-based TENG,and multi tribo-pairs have great synchronicity.The fully-packaged self-driven WO-TENG is further developed to integrate smart pavement,which can successfully decouple the influence of vehicle speed and weight on the sensing accuracy.This phenomenon demonstrates the feasibility and stability of the WO-TENG for traffic monitoring.Independently of the voltage amplitude and time interval electrical wave,vehicle speed,number of vehicles,and types of vehicles can be further evaluated accurately.This work can not only address the challenge of traditional traffic monitoring system,but also promote the development of TENG based self-powered sensors in ITSs.展开更多
基金A number of financial funding including the National Natural Science Foundation of China(Nos.52278455,52268068,52078018,52208434)National Key R&D Program of China(2022YFE0137300)+5 种基金the ShuGuang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.21SG24)China Postdoctoral Science Foundation(No.2022M711079)Provincial Natural Science Foundation/Postdoctoral Research Grant/Science and Technology Project(Nos.222300420142,202103107,192102310229)have to be acknowledged for supporting this manuscript.As well,some university's funding including Chang'an University(No.CHD300102213507)Changsha University of Science and Technology(No.KFJ230206)Henan University of Technology(No.21420156)are also appreciated.Meanwhile,the strong supports from the Editor Office of Journal of Road Engineering have to be highly acknowledged for their kindly inviting,guiding,assisting,and improving on the manuscript of current review.
文摘Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wastes is expected to offer sustainable solutions to waste recycling while enhancing the performance of roads.This review provides an extensive analysis of the recycling of three main types of solid wastes for road engineering purposes:industrial solid waste,infrastructure solid waste,and municipal life solid waste.Industrial solid wastes suitable for road engineering generally include coal gangue,fly ash,blast furnace slag,silica fume,and steel slag,etc.Infrastructure solid wastes recycled in road engineering primarily consist of construction&demolition waste,reclaimed asphalt pavements,and recycled cement concrete.Furthermore,recent exploration has extended to the utilization of municipal life solid wastes,such as incinerated bottom ash,glass waste,electronics waste,plastic waste,and rubber waste in road engineering applications.These recycled solid wastes are categorized into solid waste aggregates,solid waste cements,and solid waste fillers,each playing distinct roles in road infrastructure.Roles of solid waste acting aggregates,cements,and fillers in road infrastructures were fully investigated,including their pozzolanic properties,integration effects to virgin materials,modification or enhancement solutions,engineering performances.Utilization of these materials not only addresses the challenge of waste management but also offers environmental benefits aiming carbon neutral and contributes to sustainable infrastructure development.However,challenges such as variability in material properties,environmental impact mitigation,secondary pollution to environment by leaching,and concerns regarding long-term performance need to be further addressed.Despite these challenges,the recycled solid wastes hold immense potential in revolutionizing road construction practices and fostering environmental stewardship.This review delves into a bird’seye view of the utilization of recycled solid wastes in road engineering,highlighting advances,benefits,challenges,and future prospects.
基金This research was supported by the National Key Research and Development(R&D)Program of China(2018YFB1600100)National Natural Science Foundation of China(51978029 and 51622805)Shanghai Pujiang Program.The authors also acknowledge NASA/Lunar and Planetary Institute for permission of the figures in"Lunar sourcebook:a user’s guide to the moon"to be reused in this study。
文摘The construction of a lunar base and habitation on the Moon has always been on researchers’minds.Building materials used in in situ lunar resources are of great significance for saving expensive space freight.In this study,a new type of lunar soil simulant named Beihang(BH)-1 was developed.The chemical mineral composition and microstructure of BH-1 closely resemble those of real lunar soil,as verified by X-ray fluorescence spectroscopy(XRF),X-ray diffraction(XRD),scanning electron microscopy(SEM),and reflectance spectra.This research also synthesized a geopolymer based on BH-1 cured at simulated lunar atmospheric conditions.We also investigated the effect of supplementing aluminum(Al)sources on the enhancement of geopolymer strength based on BH-1.The rheological behavior of alkali-activated BH-1 pastes was determined for workability.XRF,XRD,Fourier transform infrared spectroscopy,SEM coupled with energy dispersive spectroscopy,and 27Al magic angle spinningnuclear magnetic resonance were used to characterize resulting geopolymers.Rheological test findings showed that the rheology of BH-1 pastes fits the Herschel–Bulkley model,and they behaved like a shear-thinning fluid.The results showed that the 28-day compressive strength of the BH-1 geopolymer was improved by up to 100.8%.Meanwhile,the weight of additives required to produce per unit strength decreased,significantly reducing the mass of materials transported from the Earth for the construction of lunar infrastructure and saving space transportation costs.Microscopic analyses showed that the mechanism to improve the mechanical properties of the BH-1 geopolymer by adding an additional Al source enhances the replacement of silicon atoms by Al atoms in the silicon–oxygen group and generates a more complete and dense amorphous gel structure.
基金The work described in this paper is supported by the National Natural Science Foundation of China(Grant Nos.52278455 and 52311530685)the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(21SG24)+1 种基金the International Cooperation Project of Science and Technology Commission of Shanghai Municipality(No.22210710700)the Fundamental Research Funds for the Central Universities.
文摘The presence of water films on a runway surface presents a risk to the landing of aircraft.The tire of the aircraft is separated from the runway due to a hydrodynamic force exerted through the water film,a phenomenon called hydroplaning.Although a lot of numerical investigations into hydroplaning have been conducted,only a few have considered the impact of the runway permeability.Hence,computational problems,such as excessive distortion and computing efficiency decay,may arise with such numerical models when dealing with the thin water film.This paper presents a numerical model comprising of the tire,water film,and the interaction with the runway,applying a mathematical model using the smoothed particle hydrodynamics and finite element(SPH-FE)algorithm.The material properties and geometric features of the tire model were included in the model framework and water film thicknesses from 0.75 mm to 7.5 mm were used in the numerical simulation.Furthermore,this work investigated the impacts of both surface texture and the runway permeability.The interaction between tire rubber and the rough runway was analyzed in terms of frictional force between the two bodies.The SPH-FE model was validated with an empirical equation proposed by the National Aeronautics and Space Administration(NASA).Then the computational efficiency of the model was compared with the traditional coupled Eulerian-Lagrangian(CEL)algorithm.Based on the SPH-FE model,four types of the runway(Flat,SMA-13,AC-13,and OGFC-13)were discussed.The simulation of the asphalt runway shows that the SMA-13,AC-13,and OGFC-13 do not present a hydroplaning risk when the runway permeability coefficient exceeds 6%.
基金supported by the National Natural Science Foundation of China(Grant Nos.42241128,51978029)Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University(No.K202206)+1 种基金China Postdoctoral Science Foundation(No.2023M730174)Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023418).
文摘Using an in situ lunar regolith as a construction material in combination with 3D printing not only reduces the weight of materials carried from the Earth but also improves the automation of lunar infrastructure construction.This study aims to improve the printability of a geopolymer based on a BH-1 lunar regolith simulant,including the extrudability,open time,and buildability,by controlling the temperature and adding admixtures.Rheological parameters were used to represent printability with different water-to-binder ratios,printing temperatures,and contents of additives.The mechanical properties of the hardening geopolymer with different filling paths and loading directions were tested.The results show that heating the printed filaments with a water-to-binder ratio of 0.32 at 80°C can adjust the printability without adding any additive,which can reduce the construction cost of lunar infrastructure.The printability of the BH-1 geopolymer can also be improved by adding 0.3%Attagel-50 and 0.5%polypropylene fiber by mass at a temperature of 20℃to cope with the changeable environmental conditions on the Moon.After curing under a simulated lunar environment,the 72-h flexural and compressive strengths of the geopolymer specimens reach 4.1 and 48.1 MPa,respectively,which are promising considering that the acceleration of gravity on the Moon is 1/6 of that on the Earth.
基金National Key R&D Program of China(No.2018YFB1600200,2021YFB1600200)National Natural Science Foundation of China(No.51608457,51778038,51808016,51808403,51908057,51908072,51908165,51908331,52008029,52008069,52078018,52078025,52078049,52078209,52108403,52122809,52178417)+9 种基金Marie Sk?odowska-Curie Individual Fellowships of the European Commission’s Horizon 2020 programme(No.101024139)Natural Science Foundation of Heilongjiang Province(No.JJ2020ZD0015)China Postdoctoral Science Foundation funded project(No.BX20180088)Research Capability Enhancement Program for Young Professors of Beijing University of Civil Engineering and Architecture(No.02080921021)Young Scholars of Beijing Talent Program(No.02082721009)Beijing Municipal Natural Science Foundation and Beijing Municipal Education Commission(No.KZ201910016017)German Research Foundation(No.OE 514/15-1(459436571))Fundamental Research Funds for the Central Universities(No.2020kfyXJJS127)Marie Sk?odowska-Curie Individual Fellowships of the European Commission’s Horizon 2020 Programme(No.101030767)Research Fund for High Level Talent Program(No.22120210108)。
文摘Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges.In the past 10 years,the pavement infrastructure strongly supports the rapid development of the global social economy.New theories,new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem.Because of actual coupled behaviors of traffic and environmental conditions,predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis.In order to summarize the current and determine the future research of pavement engineering,Journal of Traffic and Transportation Engineering(English Edition)has launched a review paper on the topic of"New innovations in pavement materials and engineering:A review on pavement engineering research 2021".Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering,this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world.The content includes asphalt binder performance and modeling,mixture performance and modeling of pavement materials,multi-scale mechanics,green and sustainable pavement,and intelligent pavement.Overall,this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.
基金supported by the National Natural Science Foundation of China(No.51978029,51622805)the Department of Transportation of Shandong Province of China(No.2018BZ4).
文摘In this study,a new GVS(Ground Volcanic Scoria)lunar regolith simulant was produced.The similarity between GVS and lunar soil was proved by comparison with Apollo lunar soil samples and other commercial lunar soil simulants.Then,GVS lunar regolith simulant was investigated as the source material for preparing geopolymer to produce building material for lunar colony construction.To study the possibility of preparing geopolymer from GVS lunar regolith simulant and the optimum activator formulation as well as the optimum curing conditions,alkaline activated GVS slurries with different mixing ratios based on an orthogonal test scheme were prepared.The geopolymer products based on GVS were characterized by flexural strength test,compressive strength test,X-ray fluorescence(XRF),X-ray diffraction(XRD),Fourier Transform Infrared Spectroscopy(FTIR),Scanning Electron Microscope coupled with Energy Dispersive Spectroscopy(SEM-EDS),29Si magic angle spinning-nuclear magnetic resonance(29Si MAS-NMR),and 27Al MAS-NMR.The experimental results indicate that changes in the mass ratio of sodium hydroxide and GVS and curing temperature have the most significant influence on the flexural strength and compressive strength,respectively.The GVS-based geopolymer can obtain the highest 28-day compressive strength and 28-day flexural strength up to 75.6 MPa and 6.3 MPa.Microstructural results imply that the changes of Si occurring in a variety of environments that explaining preliminarily about the reaction mechanism of GVS-based geopolymer.This study approves the feasibility of making a geopolymer derived from the GVS lunar regolith simulant and the potential utilization of geopolymer based on lunar regolith for construction of the lunar colony in future space exploration.
基金supported by the National Natural Science Foundation of China(Nos.51922079 and 61911530160)Key Research Project from Shanxi Transportation Holdings Group(No.19-JKKJ-1)+1 种基金the Fund of Science and Technology Commission of Shanghai Municipality(No.20DZ2251900)the Fundamental Research Funds for the Central Universities.
文摘With a rapid development of intelligent transportation systems(ITSs),traffic monitoring has gained increasing attention.Here,we present a new kind of waterbomb-origami-inspired triboelectric nanogenerator(WO-TENG)as a traffic monitoring system to integrate smart pavement with lightweight,cost-effective,excellent deformability,flexibility,and self-rebounding properties.The electrical performance is significantly improved by more than 67%compared with current origami-based TENG,and multi tribo-pairs have great synchronicity.The fully-packaged self-driven WO-TENG is further developed to integrate smart pavement,which can successfully decouple the influence of vehicle speed and weight on the sensing accuracy.This phenomenon demonstrates the feasibility and stability of the WO-TENG for traffic monitoring.Independently of the voltage amplitude and time interval electrical wave,vehicle speed,number of vehicles,and types of vehicles can be further evaluated accurately.This work can not only address the challenge of traditional traffic monitoring system,but also promote the development of TENG based self-powered sensors in ITSs.