Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(...Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.展开更多
For the public having a better understanding of solar activities,the Educational Adaptive-optics Solar Telescope(EAST)was built in July 2021 and is located at the Shanghai Astronomy Museum.The EAST consists of a 65 cm...For the public having a better understanding of solar activities,the Educational Adaptive-optics Solar Telescope(EAST)was built in July 2021 and is located at the Shanghai Astronomy Museum.The EAST consists of a 65 cm aperture solar telescope with a 177-element adaptive optics system and two-channel high resolution imaging system at the Hαand TiO bands,in addition to three full disk solar telescopes at CaK,Hαand TiO bands equipped on the tube of the main telescope.In this paper,the configuration of the EAST is described.Its performance and on-sky observational results are presented.The EAST,to our knowledge,is the most advanced solar telescope for the popularization of science in the world.Due to its excellent performance,the data acquired by the EAST can also be used for research on solar physics and space weather prediction.展开更多
Integrating deformable mirrors within the optical train of an adaptive telescope was one of the major innovations in astronomical observation technology,distinguished by its high optical throughput,reduced optical sur...Integrating deformable mirrors within the optical train of an adaptive telescope was one of the major innovations in astronomical observation technology,distinguished by its high optical throughput,reduced optical surfaces,and the incorporation of the deformable mirror.Typically,voice-coil actuators are used,which require additional position sensors,internal control electronics,and cooling systems,leading to a very complex structure.Piezoelectric deformable secondary mirror technologies were proposed to overcome these problems.Recently,a high-order piezoelectric deformable secondary mirror has been developed and installed on the 1.8-m telescope at Lijiang Observatory in China to make it an adaptive telescope.The system consists of a 241-actuator piezoelectric deformable secondary mirror,a 192-sub-aperture Shack-Hartmann wavefront sensor,and a multi-core-based real-time controller.The actuator spacing of the PDSM measures 19.3 mm,equivalent to approximately 12.6 cm when mapped onto the primary mirror,significantly less than the voicecoil-based adaptive telescopes such as LBT,Magellan and VLT.As a result,stellar images with Strehl ratios above 0.49 in the R band have been obtained.To our knowledge,these are the highest R band images captured by an adaptive telescope with deformable secondary mirrors.Here,we report the system description and on-sky performance of this adaptive telescope.展开更多
Large-aperture solar telescopes play an important role in solar observations and research,and require high temporal and spatial resolution[1].To solve some fundamental problems such as the solar dynamo,coronal heating...Large-aperture solar telescopes play an important role in solar observations and research,and require high temporal and spatial resolution[1].To solve some fundamental problems such as the solar dynamo,coronal heating,and the triggering of major solar eruptions,the spatial resolution for solar-atmosphere observation should reach at least 0.1 arcsec[2].展开更多
Ground-layer adaptive optics(GLAO)has shown its potential for use in solar observation owing to its wide field-of-view(FOV)correction.A high-order GLAO system that consists of a multiple direction Shack-Hartmann wavef...Ground-layer adaptive optics(GLAO)has shown its potential for use in solar observation owing to its wide field-of-view(FOV)correction.A high-order GLAO system that consists of a multiple direction Shack-Hartmann wavefront sensor(WFS),a realtime controller with a multi-CPU processor,and a 151-element deformable mirror was developed for the 1-m New Vacuum Solar Telescope at Yunnan Observatories,Chinese Academy of Sciences.A hexagonal microlens with 9×8 subapertures is employed in the WFS.The detection FOV is 42′′×37′′,in which 9(3×3)guide regions are extracted for multiple direction wavefront sensing with a frame rate of up to 2200 Hz.To our knowledge,this is the first professional solar GLAO system used as a regularly operating instrument for scientific observations.Its installation and adjustment were performed in the summer of 2021.In this article,a detailed account of the GLAO system and its first light results and a comprehensive analysis of the performance of the GLAO system are provided.The results show that this system can effectively improve the imaging quality after compensating for the wavefront aberration due to ground-layer turbulence.展开更多
This paper describes a novel chemical method for preparing SiO2/TiO2 Janus particles. First, polystyrene (PSt)/SiO2 particles with a raspberry-like structure are prepared by electrostatic assembly. The influences of...This paper describes a novel chemical method for preparing SiO2/TiO2 Janus particles. First, polystyrene (PSt)/SiO2 particles with a raspberry-like structure are prepared by electrostatic assembly. The influences of the reaction time of sulfonation and the treatment times of polyelectrolyte solutions (PDADMAC, PSS) on PSt and SiO2 are investigated with respect to the surface charge density of the particles. SiO2/TiO2 Janus particles are then obtained by hydrolysis of butyl titanate on the surface of PSt/SiO2 particles followed by a calcination process. Particle size analyzer, Zeta potential instrument, FTIR, TEM and SEM are used to characterize the particle size, the amount of charge on the surface of PSt and SiO2 particles and the compositions and morphologies of PSt/SiO2, SiO2/Ti02 and PSt/SiO2/Ti02. The diameters of the PSt, SiO2, PSt/Si02 and SiO2/Ti02 particles are 2.0 t^m, 303 nm, 2.7 bcm and 330 nm, respectively.展开更多
This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized ...This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized via internal phase separation triggered by evaporation of dichloromethane (DCM) from PS/PGMA/DCM- in water emulsion droplets. Then, the Janus particles were aminated and sequentially carboxylated to obtain PS/PGMA-NH2 and PS/PGMA-COOH particles. Ag+ self-assembled on the surface of PGMA hemi- sphere of the functionalized PS/PGMA particles by coordinating with amine/carboxyl. PS/Ag asymmetric hybrid particles with 7.29 wt% of Ag were obtained by reduction of Ag+, Scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy results confirmed that Ag was asymmetrically distributed on the surface of polymer particles.展开更多
Nitroanilines are important building blocks in pharmaceuticals,materials and dyes.Nitration methods for anilines under mild conditions are highly desired.Herein,we report a photochemical method for the nitration of an...Nitroanilines are important building blocks in pharmaceuticals,materials and dyes.Nitration methods for anilines under mild conditions are highly desired.Herein,we report a photochemical method for the nitration of anilines bearing various protecting groups by 5-methyl-1,4-dinitroimidazole as a new type of nitro source.This method is light-controlled and proceeds under mild reaction conditions with high efficiency.Fmoc-,Ts-and alkyl-protected anilines are all well nitrated with good functional group tolerance.展开更多
基金funded by the National Natural Science Foundation of China(11727805,12103057)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021378).
文摘Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11727805,11703029,11733005 and 12103057)。
文摘For the public having a better understanding of solar activities,the Educational Adaptive-optics Solar Telescope(EAST)was built in July 2021 and is located at the Shanghai Astronomy Museum.The EAST consists of a 65 cm aperture solar telescope with a 177-element adaptive optics system and two-channel high resolution imaging system at the Hαand TiO bands,in addition to three full disk solar telescopes at CaK,Hαand TiO bands equipped on the tube of the main telescope.In this paper,the configuration of the EAST is described.Its performance and on-sky observational results are presented.The EAST,to our knowledge,is the most advanced solar telescope for the popularization of science in the world.Due to its excellent performance,the data acquired by the EAST can also be used for research on solar physics and space weather prediction.
基金funded by the National Natural Science Foundation of China(No.11733005,12173041,11727805)Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2020376)Frontier Research Fund of Institute of Optics and Electronics,Chinese Academy of Sciences(No.C21K002).
文摘Integrating deformable mirrors within the optical train of an adaptive telescope was one of the major innovations in astronomical observation technology,distinguished by its high optical throughput,reduced optical surfaces,and the incorporation of the deformable mirror.Typically,voice-coil actuators are used,which require additional position sensors,internal control electronics,and cooling systems,leading to a very complex structure.Piezoelectric deformable secondary mirror technologies were proposed to overcome these problems.Recently,a high-order piezoelectric deformable secondary mirror has been developed and installed on the 1.8-m telescope at Lijiang Observatory in China to make it an adaptive telescope.The system consists of a 241-actuator piezoelectric deformable secondary mirror,a 192-sub-aperture Shack-Hartmann wavefront sensor,and a multi-core-based real-time controller.The actuator spacing of the PDSM measures 19.3 mm,equivalent to approximately 12.6 cm when mapped onto the primary mirror,significantly less than the voicecoil-based adaptive telescopes such as LBT,Magellan and VLT.As a result,stellar images with Strehl ratios above 0.49 in the R band have been obtained.To our knowledge,these are the highest R band images captured by an adaptive telescope with deformable secondary mirrors.Here,we report the system description and on-sky performance of this adaptive telescope.
基金supported by the National Natural Science Foundation of China(Grant No.11727805)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2018412)。
文摘Large-aperture solar telescopes play an important role in solar observations and research,and require high temporal and spatial resolution[1].To solve some fundamental problems such as the solar dynamo,coronal heating,and the triggering of major solar eruptions,the spatial resolution for solar-atmosphere observation should reach at least 0.1 arcsec[2].
基金supported by the National Natural Science Foundation of China(Grant Nos.11727805,and 12103057)Frontier Research Fund of Institute of Optics and Electronics,Chinese Academy of Sciences(Grant No.C21K002)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant Nos.2021378,2020376,and 2022386)。
文摘Ground-layer adaptive optics(GLAO)has shown its potential for use in solar observation owing to its wide field-of-view(FOV)correction.A high-order GLAO system that consists of a multiple direction Shack-Hartmann wavefront sensor(WFS),a realtime controller with a multi-CPU processor,and a 151-element deformable mirror was developed for the 1-m New Vacuum Solar Telescope at Yunnan Observatories,Chinese Academy of Sciences.A hexagonal microlens with 9×8 subapertures is employed in the WFS.The detection FOV is 42′′×37′′,in which 9(3×3)guide regions are extracted for multiple direction wavefront sensing with a frame rate of up to 2200 Hz.To our knowledge,this is the first professional solar GLAO system used as a regularly operating instrument for scientific observations.Its installation and adjustment were performed in the summer of 2021.In this article,a detailed account of the GLAO system and its first light results and a comprehensive analysis of the performance of the GLAO system are provided.The results show that this system can effectively improve the imaging quality after compensating for the wavefront aberration due to ground-layer turbulence.
基金support provided by the National Basic Research Program of China(2010CB635111)the National Natural Science Foundation of China(No.51173146,NO.51173147)+3 种基金the Key Project of Space Foundation(CASC201106)the Doctorate Foundation of Northwestern Polytechnical University(CX201210)the Graduate Starting Seed Fund of Northwestern Polytechnical University(Z2012158)the Basic Research Fund of Northwestern Polytechnical University(JC20120248)
文摘This paper describes a novel chemical method for preparing SiO2/TiO2 Janus particles. First, polystyrene (PSt)/SiO2 particles with a raspberry-like structure are prepared by electrostatic assembly. The influences of the reaction time of sulfonation and the treatment times of polyelectrolyte solutions (PDADMAC, PSS) on PSt and SiO2 are investigated with respect to the surface charge density of the particles. SiO2/TiO2 Janus particles are then obtained by hydrolysis of butyl titanate on the surface of PSt/SiO2 particles followed by a calcination process. Particle size analyzer, Zeta potential instrument, FTIR, TEM and SEM are used to characterize the particle size, the amount of charge on the surface of PSt and SiO2 particles and the compositions and morphologies of PSt/SiO2, SiO2/Ti02 and PSt/SiO2/Ti02. The diameters of the PSt, SiO2, PSt/Si02 and SiO2/Ti02 particles are 2.0 t^m, 303 nm, 2.7 bcm and 330 nm, respectively.
基金the funding from National Nature Science Foundation of China(Grant No.51173146)Graduate Starting Seed Fund of Northwestern Polytechnical University(Grant No.z2012158)
文摘This article presents a facile approach to preparation of polystyrene/silver (PS/Ag) asymmetric hybrid par- ticles. In this method, polystyrene/polyglycidyl methacrylate (PS/PGMA) Janus particles were synthesized via internal phase separation triggered by evaporation of dichloromethane (DCM) from PS/PGMA/DCM- in water emulsion droplets. Then, the Janus particles were aminated and sequentially carboxylated to obtain PS/PGMA-NH2 and PS/PGMA-COOH particles. Ag+ self-assembled on the surface of PGMA hemi- sphere of the functionalized PS/PGMA particles by coordinating with amine/carboxyl. PS/Ag asymmetric hybrid particles with 7.29 wt% of Ag were obtained by reduction of Ag+, Scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy results confirmed that Ag was asymmetrically distributed on the surface of polymer particles.
基金supported by NSF of China(Grant 21922703 and 91953112 to H.W.)the Natural Science Foundation of Jiangsu Province(Grant BK20190004 and BK20202004)National Key R&D Program of China(2019YFA0905800).
文摘Nitroanilines are important building blocks in pharmaceuticals,materials and dyes.Nitration methods for anilines under mild conditions are highly desired.Herein,we report a photochemical method for the nitration of anilines bearing various protecting groups by 5-methyl-1,4-dinitroimidazole as a new type of nitro source.This method is light-controlled and proceeds under mild reaction conditions with high efficiency.Fmoc-,Ts-and alkyl-protected anilines are all well nitrated with good functional group tolerance.