期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Hyphae-mediated bioassembly of carbon fibers derivatives for advanced battery energy storage 被引量:1
1
作者 Lei Huang Zhong Qiu +10 位作者 Ping Liu Xinhui Xia Feng Cao xinping he Chen Wang Wangjun Wan Yongqi Zhang Yang Xia Wenkui Zhang Minghua Chen Jiancang Zhou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期140-150,共11页
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei... Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices. 展开更多
关键词 bioassembly carbon fibers energy storage graphene lithium-sulfur batteries
下载PDF
Ultra-homogeneous dense Ag nano layer enables long lifespan solid-state lithium metal batteries
2
作者 Yaning Liu Tianqi Yang +13 位作者 Ruyi Fang Chengwei Lu Ruojian Ma Ke Yue Zhen Xiao Xiaozheng Zhou Wenkui Zhang xinping he Yongping Gan Jun Zhang Xinhui Xia Hui Huang Xinyong Tao Yang Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期110-119,共10页
The unstable electrolyte/lithium(Li)anode interface has been one of the key challenges in realizing high energy density solid-state lithium metal batteries(LMBs)applications.Herein,a dense and uniform silver(Ag)nano i... The unstable electrolyte/lithium(Li)anode interface has been one of the key challenges in realizing high energy density solid-state lithium metal batteries(LMBs)applications.Herein,a dense and uniform silver(Ag)nano interlayer with a thickness of∼35 nm is designed accurately by magnetron sputtering technology to optimize the electrolyte/Li anode interface.This Ag nano layer reacts with Li metal anode to in-situ form Li-Ag alloy,thus enhancing the physical interfacial contact,and further improving the interfacial wettability and compatibility.In particular,the Li-Ag alloy is inclined to form AgLi phase proved by cryo-TEM and DFT,effectively preventing SN from continuously“attacking”the Li metal anode due to the lower adsorption of succinonitrile(SN)molecules on AgLi than that of pure Li metal,thereby significantly reinforcing the interfacial stability.Hence,the enhanced physical and chemical stability of electrolyte/Li anode interface promotes the homogeneous deposition of Li^(+)and inhibits the dendrite growth.The Li-symmetric cell maintains stable operation for up to 1700 h and the cycling stability of LiFePO_(4)|SPE|Li full cell is remarkably improved at room temperature(capacity retention rate of 91.9%for 200 cycles).This work opens an effective way for accurate and controllable interface design of long lifespan solid-state LMBs. 展开更多
关键词 Silvernano layer Poly(ethylene oxide) Solid polymer electrolyte SUCCINONITRILE Lithium metal battery
下载PDF
A critical review on composite solid electrolytes for lithium batteries:Design strategies and interface engineering 被引量:2
3
作者 Tianqi Yang Cheng Wang +7 位作者 Wenkui Zhang Yang Xia Hui Huang Yongping Gan xinping he Xinhui Xia Xinyong Tao Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期189-209,共21页
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren... The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs. 展开更多
关键词 Inorganic solid electrolytes Polymer solid electrolytes Composite solid electrolytes Interface engineering
下载PDF
Liquid-source plasma technology for construction of dual bromine-fluorine-enriched interphases on lithium metal anodes with enhanced performance
4
作者 Ping Liu Zhong Qiu +10 位作者 Feng Cao Yongqi Zhang xinping he Shenghui Shen Xinqi Liang Minghua Chen Chen Wang Wangjun Wan Yang Xi Xinhui Xia Wenkui Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第10期68-78,共11页
The electrochemical performance of Li metal anode is closely bound up with the interphase between Li and lithium-loaded skeleton as well as solid electrolyte interphase(SEI)on Li surface.Herein,for the first time,we p... The electrochemical performance of Li metal anode is closely bound up with the interphase between Li and lithium-loaded skeleton as well as solid electrolyte interphase(SEI)on Li surface.Herein,for the first time,we propose a novel liquid-source CHBr_(2)F plasma technology to simultaneously construct dual bromine-fluorine-enriched interphases:NiBr_(2)-NiF_(2) interphase on sponge Ni(SN)skeleton and LiBr-LiF-enriched SEI on Li anode,respectively.Based on density functional theory(DFT)calculations and COMSOL multiphysics simulation results,SN skeleton with NiBr_(2)-NiF_(2)interphase can effectively decrease the local current density with good lithiophilicity.And the LiBr-LiF-enriched SEI on Li surface can function to block electron tunneling and hinder side electrochemical reduction of electrolyte components,thus suppressing the growth of dendrite and facilitating the homogeneous transportation of lithium ions.Consequently,the Li/SN electrodes with modified interphases show remarkable stability with a low overpotential of 22.6 mV over 1800 h at 1 mA cm^(-2)/1 mAh cm^(-2)and an exceptional average Coulombic efficiency of 99.6%.When coupled with LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode,the full cells deliver improved cycling stability with a capacity retention of 79.5%even after 350 cycles at 0.5 C.This study provides a facile and new plasma method for the construction of advanced Li anodes for energy storage. 展开更多
关键词 Plasma Solid electrolyte interphase LIBR LIF Lithium metal anodes
原文传递
Carbon materials for metal-ion batteries 被引量:2
5
作者 Zhong Qiu Feng Cao +7 位作者 Guoxiang Pan Chen Li Minghua Chen Yongqi Zhang xinping he Yang Xia Xinhui Xia Wenkui Zhang 《ChemPhysMater》 2023年第4期267-281,共15页
Metal-ion(Li-,Na-,Zn-,K-,Mg-,and Al-ion)batteries(MIBs)play an important role in realizing the goals of“emission peak and carbon neutralization”because of their green production techniques,lower pollution,high volta... Metal-ion(Li-,Na-,Zn-,K-,Mg-,and Al-ion)batteries(MIBs)play an important role in realizing the goals of“emission peak and carbon neutralization”because of their green production techniques,lower pollution,high voltage,and large energy density.Carbon-based materials are indispensable for developing MIBs and are widely adopted as active or auxiliary materials in the anodes and cathodes.For example,carbon-based materials,includ-ing graphite,Si/C and hard carbon,have been used as anode materials for Li-and Na-ion batteries.Carbon can also be used as a conductive coating for cathodes,such as in LiFePO 4/C,to achieve better performance.In addition,as new high-valence MIBs(Zn-,Al-,and Mg-ion)have emerged,a growing number of novel carbon-based mate-rials have been utilized to construct high-performance MIBs.Herein,we discuss the recent development trends in advanced carbon-based materials for MIBs.The impact of the structure properties of advanced carbon-based materials on energy storage is addressed,and a perspective on their development is also proposed. 展开更多
关键词 Carbon materials Electrochemical energy storage Metal-ion batteries Lithium-ion batteries Sodium-ion batteries
原文传递
Correction:Interfaces in Sulfide Solid Electrolyte‑Based All‑Solid‑State Lithium Batteries:Characterization,Mechanism and Strategy 被引量:1
6
作者 Zhan Wu Xiaohan Li +8 位作者 Chao Zheng Zheng Fan Wenkui Zhang Hui Huang Yongping Gan Yang Xia xinping he Xinyong Tao Jun Zhang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期186-186,共1页
Correction to:Electrochemical Energy Reviews(2023)6:10 https://doi.org/10.1007/s41918-022-00176-0 The publication of this article unfortunately contained mistakes.The conflict of interest of one of the authors was mis... Correction to:Electrochemical Energy Reviews(2023)6:10 https://doi.org/10.1007/s41918-022-00176-0 The publication of this article unfortunately contained mistakes.The conflict of interest of one of the authors was missing. 展开更多
关键词 SOLID CORRECTION ELECTROCHEMICAL
原文传递
Interfaces in Sulfide Solid Electrolyte‑Based All‑Solid‑State Lithium Batteries:Characterization,Mechanism and Strategy
7
作者 Zhan Wu Xiaohan Li +8 位作者 Chao Zheng Zheng Fan Wenkui Zhang Hui Huang Yongping Gan Yang Xia xinping he Xinyong Tao Jun Zhang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期573-613,共41页
Owing to the advantages of high energy density and environmental friendliness,lithium-ion batteries(LIBs)have been widely used as power sources in electric vehicles,energy storage systems and other devices.Conventiona... Owing to the advantages of high energy density and environmental friendliness,lithium-ion batteries(LIBs)have been widely used as power sources in electric vehicles,energy storage systems and other devices.Conventional LIBs composed of liquid electrolytes(LEs)have potential safety hazards;thermal runaway easily leads to battery explosion and spontaneous combustion.To realize a large-scale energy storage system with higher safety and higher energy density,replacing LEs with solid-state electrolytes(SSEs)has been pursued.Among the many SSEs,sulfide SSEs are attractive because of their high ionic conductivities,easy processabilities and high thermostabilities.However,interfacial issues(interfacial reactions,chemo-mechanical failure,lithium dendrite formation,etc.)between sulfide SSEs and electrodes are factors limiting widespread application.In addition,the intrinsic interfacial issues of sulfide SSEs(electrochemical windows,diffusion mechanisms of Li^(+),etc.)should not be ignored.In this review,the behaviors,properties and mechanisms of interfaces in all-solid-state lithium batteries with a variety of sulfide SSEs are comprehensively summarized.Additionally,recent research progress on advanced characterization methods and designs used to stabilize interfaces is discussed.Finally,outlooks,challenges and possible interface engineering strategies are analyzed and proposed. 展开更多
关键词 All-solid-state lithium batteries Sulfide solid electrolytes Interface
原文传递
Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance
8
作者 Yihong Li Zhong Qiu +16 位作者 Lei Huang Shenghui Shen Ping Liu Haomiao Zhang Feng Cao xinping he Jun Zhang Yang Xia Xinqi Liang Chen Wang Wangjun Wan Yongqi Zhang Minghua Chen Wenkui Zhang Hui Huang Yongping Gan Xinhui Xia 《Chinese Chemical Letters》 SCIE CAS 2024年第11期505-511,共7页
Silicon(Si)is considered as one of the most promising anode materials for advanced lithium-ion batteries due to its high theoretical capacity,environmental friendliness,and widespread availability.However,great challe... Silicon(Si)is considered as one of the most promising anode materials for advanced lithium-ion batteries due to its high theoretical capacity,environmental friendliness,and widespread availability.However,great challenges such as volumetric expansion,limited ionic/electronic conductivity properties and complex manufacturing processes hinder its practical applications.Herein,a novel plasma-enhanced reduced graphene oxide fibers/Si(PrGOFs/Si)composite anode is first proposed by using wet-spinning technology followed by plasma-enhanced reduction method.The PrGOFs provide large space to accommodate the volume expansion of Si nanoparticles(SiNPs)by forming a flexible 3D conductive network.Compared to the conventional thermally reduced graphene oxide fibers/Si(TrGOFs/Si)sample,the PrGOFs/Si anodes demonstrate higher conductivity,specific surface area,and superior fabrication efficiency.Accordingly,the Pr GOFs/Si anodes exhibit a reversible capacity of 698.3 mA h/g,and maintain a specific capacity of 602.5m Ah/g at a current density of 200 m A/g after 100 cycles,superior to conventional Tr GOFs/Si counterparts.This research presents a novel strategy for the preparation of high-performance Si/carbon anodes for energy storage applications. 展开更多
关键词 Li ion batteries Si anode Plasma Graphene fibers Carbon
原文传递
One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature
9
作者 Tao Tang Chen Li +12 位作者 Sipu Li Zhong Qiu Tianqi Yang Beirong Ye Shaojun Shi Chunyang Wu Feng Cao Xinhui Xia Minghua Chen Xinqi Liang xinping he Xin Liu Yongqi Zhang 《Chinese Chemical Letters》 SCIE CAS 2024年第11期486-491,共6页
Highly active transition metal nitrides are desirable for electrocatalytic reactions,but their long-term stability is still unsatisfactory and thus limiting commercial applications.Herein,for the first time,we report ... Highly active transition metal nitrides are desirable for electrocatalytic reactions,but their long-term stability is still unsatisfactory and thus limiting commercial applications.Herein,for the first time,we report a unique and universal room-temperature urea plasma method for controllable synthesis of N-doped carbon coated metal(Fe,Co,Ni,etc.)nitrides arrays electrocatalysts.The preformed metal oxides arrays can be successfully converted into metal nitrides arrays with preserved nanostructures and a thin layer of N-doped carbon(N-C)via one-step urea plasma.Typically,as a representative case,N-C@CoN nanowire arrays are illustrated and corresponding formation mechanism by plasma is proposed.Notably,the designed N-C@Co N catalysts deliver excellent electrocatalytic activity and long-term stability both in oxygen evolution reaction(OER)and urea oxidation reaction(UOR).For OER,a low overpotential(264 mV at 10 mA/cm^(2))and high stability(>50 h at 20 mA/cm^(2))are acquired.For UOR,a current density of100 m A/cm^(2) is achieved at only 1.39 V and maintain over 100 h.Theoretical calculations reveal that the synergetic coupling effect of CoN and N-C can significantly facilitate the charge-transfer process,optimize adsorbed intermediates binding strength and further greatly decrease the energy barrier.This strategy provides a novel method for fabrication of N-C@metal nitrides as highly active and stable catalysts. 展开更多
关键词 Urea plasma Metal nitrides Carbon shell Oxygen evolution reaction Urea oxidation reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部