Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e...Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.展开更多
In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ...In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.展开更多
Growing energy demand drives the rapid development of clean and reliable energy sources.In the past years,the exploration of novel materials with considerable efficiency and durability has drawn attention in the area ...Growing energy demand drives the rapid development of clean and reliable energy sources.In the past years,the exploration of novel materials with considerable efficiency and durability has drawn attention in the area of electrochemical energy conversion.Transition metal macrocyclic metallophthalocyanines(MPcs)-based catalysts with a peculiar 2D constitution have emerged with a promising future account of their highly structural tailorability and molecular functionality which greatly extend their functionalities as electrocatalytic materials for energy conversion.This review summarizes the systematic engineering of synthesis of MPcs and their analogs in detail,and mostly pays attention to the frontier research of MPc-based high-performance catalysts toward different electrocatalytic processes concerning hydrogen,oxygen,water,carbon dioxide,and nitrogen,with a particular focus on discussing the interrelationship between the electrocatalytic activity and component/structure,as well as functional applications of MPcs.Finally,we give the gaps that need to be addressed after much thought.展开更多
Grapevine powdery mildew is caused by Erysiphe necator,which seriously harms grape production in the world.Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew.A n...Grapevine powdery mildew is caused by Erysiphe necator,which seriously harms grape production in the world.Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew.A novel VqNSTS3 was identified and cloned from Chinese wild Vitis quinquangularis accession Danfeng-2.The novel VqNSTS3 was transferred into susceptible‘Thompson Seedless’by Agrobacterium-mediated transformation.The transgenic plants showed resistance to the disease and activated other resistance-related genes.VqNSTS3 expression in grapevine is regulated by VqWRKY33,and which binds to TTGACC in the VqNSTS3 promoter.Furthermore,VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus led to enhanced signal transduction and increased VqNSTS3 expression.ProVqNSTS3::VqNSTS3-GFP of transgenic VqNSTS3 in Arabidopsis thaliana was observed to move to and wrap the pathogen’s haustoria and block invasion by Golovinomyces cichoracearum.These results demonstrate that stilbene accumulation of novel VqNSTS3 of the Chinese wild Vitis quinquangularis accession Danfeng-2 prevented pathogen invasion and enhanced resistance to powdery mildew.Therefore,VqNSTS3 can be used in generating powdery mildew-resistant grapevines.展开更多
Summary What is already known about this topic?Worldwide,tuberculosis(TB)continues to be the most important cause of death from a single infectious agent,and China has a high TB burden.Although the reported incidence ...Summary What is already known about this topic?Worldwide,tuberculosis(TB)continues to be the most important cause of death from a single infectious agent,and China has a high TB burden.Although the reported incidence of TB in students is lower than that in general population,TB outbreaks in schools have continuously been reported in the past years,suggesting that schools are a high-risk setting for TB transmission.展开更多
In this paper,a miniature video stabilization system is designed to deal with the image jitter and motion blur problem for°apping-wing aerial vehicles(FWAVs).First,a light and two-axis pan–tilt(about 13 g)is bui...In this paper,a miniature video stabilization system is designed to deal with the image jitter and motion blur problem for°apping-wing aerial vehicles(FWAVs).First,a light and two-axis pan–tilt(about 13 g)is built for the FWAV to counteract most of the jitter e®ect.Then,an electronic image stabilization method combined with a Micro-Electro Mechanical Systems(MEMSs)gyroscope is proposed to further stabilize the images.Finally,°ight experiment results show that the designed video stabilization system e®ectively improves the quality of aerial videos.展开更多
New particle formation(NPF)events are an increasingly interesting topic in air quality and climate science.In this study,the particle number size distributions,and the frequency of NPF events over Hefei were investiga...New particle formation(NPF)events are an increasingly interesting topic in air quality and climate science.In this study,the particle number size distributions,and the frequency of NPF events over Hefei were investigated from November 2018 to February 2019.The proportions of the nucleation mode,Aitken mode,and accumulation mode were 24.59%,53.10%,and 22.30%,respectively,which indicates the presence of abundant ultrafine particles in Hefei.Forty-six NPF events occurred during the observation days,accounting for 41.82%of the entire observation period.Moreover,the favorable meteorological conditions,potential precursor gases,and PM_(2.5)range of the NPF events were analyzed.Compared to non-NPF days,the NPF events preferentially occurred on days with lower relative humidity,higher wind speeds,and higher temperatures.When the PM_(2.5) was 15–20,70–80,and105–115μg/m^(3),the frequency of the NPF events was higher.Nucleation mode particles were positively related to atmospheric oxidation indicated by ozone when PM_(2.5) ranged from 15 to 20μg/m^(3),and related to gaseous precursors like SO_(2) and NO_(2) when PM_(2.5)was located at 70-80 and 105–115μg/m^(3).On pollution days,NPF events did not directly contribute to the increase in the PM_(2.5) in the daytime,however,NPF events would occur during the night and the growth of particulate matter contributes to the nighttime PM_(2.5) contents.This could lead to pollution that lasted into the next day.These findings are significant to the improvement of our understanding of the effects of aerosols on air quality.展开更多
基金supported by the National Natural Science Foundation of China(U21A20281)the Special Fund for Young Teachers from Zhengzhou University(JC23557030,JC23257011)+1 种基金the Key Research Projects of Higher Education Institutions of Henan Province(24A530009)the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336).
文摘Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
基金This research was funded by the Natural Science Research Project of Higher Education Institutions in Anhui Province(Grant No.2022AH040045)the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(Grant No.2021-YF22).
文摘In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.
基金financially supported by the National Natural Science Foundation of China(51702291)the China Postdoctoral Science Foundation(2020M682352)+2 种基金the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,Chinasupport from the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336)the Youth Talent Program of Zhengzhou University(32340398)
文摘Growing energy demand drives the rapid development of clean and reliable energy sources.In the past years,the exploration of novel materials with considerable efficiency and durability has drawn attention in the area of electrochemical energy conversion.Transition metal macrocyclic metallophthalocyanines(MPcs)-based catalysts with a peculiar 2D constitution have emerged with a promising future account of their highly structural tailorability and molecular functionality which greatly extend their functionalities as electrocatalytic materials for energy conversion.This review summarizes the systematic engineering of synthesis of MPcs and their analogs in detail,and mostly pays attention to the frontier research of MPc-based high-performance catalysts toward different electrocatalytic processes concerning hydrogen,oxygen,water,carbon dioxide,and nitrogen,with a particular focus on discussing the interrelationship between the electrocatalytic activity and component/structure,as well as functional applications of MPcs.Finally,we give the gaps that need to be addressed after much thought.
基金The research was funded by the National Natural Science Foundation of China(grant no.32272667).
文摘Grapevine powdery mildew is caused by Erysiphe necator,which seriously harms grape production in the world.Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew.A novel VqNSTS3 was identified and cloned from Chinese wild Vitis quinquangularis accession Danfeng-2.The novel VqNSTS3 was transferred into susceptible‘Thompson Seedless’by Agrobacterium-mediated transformation.The transgenic plants showed resistance to the disease and activated other resistance-related genes.VqNSTS3 expression in grapevine is regulated by VqWRKY33,and which binds to TTGACC in the VqNSTS3 promoter.Furthermore,VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus led to enhanced signal transduction and increased VqNSTS3 expression.ProVqNSTS3::VqNSTS3-GFP of transgenic VqNSTS3 in Arabidopsis thaliana was observed to move to and wrap the pathogen’s haustoria and block invasion by Golovinomyces cichoracearum.These results demonstrate that stilbene accumulation of novel VqNSTS3 of the Chinese wild Vitis quinquangularis accession Danfeng-2 prevented pathogen invasion and enhanced resistance to powdery mildew.Therefore,VqNSTS3 can be used in generating powdery mildew-resistant grapevines.
基金This work was supported by the Major Science and Technology Fund Project of Xinjiang Uygur Autonomous Region(2017A03006-1)the Center for Disease Control and Prevention Research Fund Project of Xinjiang Uygur Autonomous Region(2019001).
文摘Summary What is already known about this topic?Worldwide,tuberculosis(TB)continues to be the most important cause of death from a single infectious agent,and China has a high TB burden.Although the reported incidence of TB in students is lower than that in general population,TB outbreaks in schools have continuously been reported in the past years,suggesting that schools are a high-risk setting for TB transmission.
基金supported by the National Key Research and Development Program of China under Grant 2019YFB1703603the National Natural Science Foundation of China under Grants 61803025,62173031,and 62073031+1 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant FRF-IDRY-19-010and the Beijing Top Discipline for Arti-cial Intelligent Science and Engineering,University of Science and Technology Beijing.
文摘In this paper,a miniature video stabilization system is designed to deal with the image jitter and motion blur problem for°apping-wing aerial vehicles(FWAVs).First,a light and two-axis pan–tilt(about 13 g)is built for the FWAV to counteract most of the jitter e®ect.Then,an electronic image stabilization method combined with a Micro-Electro Mechanical Systems(MEMSs)gyroscope is proposed to further stabilize the images.Finally,°ight experiment results show that the designed video stabilization system e®ectively improves the quality of aerial videos.
基金supported by grants from the National Key Research and Development Program of China(Nos.2017YFC0210002,2018YFC0213104,2016YFC0203302 and 2017YFC0212800)the National Natural Science Foundation of China(Nos.41722501,51778596,and 41977184)+5 种基金the Anhui Science and Technology Major Project(No.18030801111)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23020301)the National Key Project for Causes and Control of Heavy Air Pollution(Nos.DQGG0102 and DQGG0205)the Natural Science Foundation of Anhui Province(No.1908085QD170)the Key Research and Development Project of Anhui Province(No.202004i07020002)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(No.CERAE202004)。
文摘New particle formation(NPF)events are an increasingly interesting topic in air quality and climate science.In this study,the particle number size distributions,and the frequency of NPF events over Hefei were investigated from November 2018 to February 2019.The proportions of the nucleation mode,Aitken mode,and accumulation mode were 24.59%,53.10%,and 22.30%,respectively,which indicates the presence of abundant ultrafine particles in Hefei.Forty-six NPF events occurred during the observation days,accounting for 41.82%of the entire observation period.Moreover,the favorable meteorological conditions,potential precursor gases,and PM_(2.5)range of the NPF events were analyzed.Compared to non-NPF days,the NPF events preferentially occurred on days with lower relative humidity,higher wind speeds,and higher temperatures.When the PM_(2.5) was 15–20,70–80,and105–115μg/m^(3),the frequency of the NPF events was higher.Nucleation mode particles were positively related to atmospheric oxidation indicated by ozone when PM_(2.5) ranged from 15 to 20μg/m^(3),and related to gaseous precursors like SO_(2) and NO_(2) when PM_(2.5)was located at 70-80 and 105–115μg/m^(3).On pollution days,NPF events did not directly contribute to the increase in the PM_(2.5) in the daytime,however,NPF events would occur during the night and the growth of particulate matter contributes to the nighttime PM_(2.5) contents.This could lead to pollution that lasted into the next day.These findings are significant to the improvement of our understanding of the effects of aerosols on air quality.