Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst...Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.展开更多
Room-temperature sodium–sulfur(RT/Na–S)batteries are regarded as promising large-scale stationary energy storage systems owing to their high energy density and low cost as well as the earth-abundant reserves of sodi...Room-temperature sodium–sulfur(RT/Na–S)batteries are regarded as promising large-scale stationary energy storage systems owing to their high energy density and low cost as well as the earth-abundant reserves of sodium and sulfur.However,the diffusion of polysulfides and sluggish kinetics of conversion reactions are still major challenges for their application.Herein,we developed a powerful and functional separator to inhibit the shuttle effect by coating a lightweight three-dimensional cellulose nanofiber-derived carbon aerogel on a glass fiber separator(denoted NSCA@GF).The hierarchical porous structures,favorable electronic conductivity,and three-dimensional interconnected network of N,S-codoped carbon aerogel endow a multifunctional separator with strong polysulfide anchoring capability and fast reaction kinetics of polysulfide conversion,which can act as the barrier layer and an expanded current collector to increase sulfur utilization.Moreover,the hetero-doped N/S sites are believed to strengthen polysulfide anchoring capability via chemisorption and accelerate the redox kinetics of polysulfide conversion,which is confirmed from experimental and theoretical results.As a result,the assembled Na–S coin cells with the NSCA@GF separator showed a high reversible capacity(788.8 mAh g^(−1) at 0.1 C after 100 cycles)and superior cycling stability(only 0.059%capacity decay per cycle over 1000 cycles at 1 C),thereby demonstrating the significant potential for application in high-performance RT/Na–S batteries.展开更多
The design and development of electrocatalysts composed of non-noble-metal catalysts with both large surface area and high electrical conductivities are crucial for the hydrogen evolution reaction(HER).Here,a xylose-b...The design and development of electrocatalysts composed of non-noble-metal catalysts with both large surface area and high electrical conductivities are crucial for the hydrogen evolution reaction(HER).Here,a xylose-based porous carbon is coupled with a MoS2-Mo P heterojunction(MoS2-Mo P/FPC)hybrid and used as a promising catalyst for HER.The hybrid is prepared by immobilizing petal-like MoS2 nanosheets on porous carbon(MoS2/FPC),followed by controlling the phosphidation in Ar/H2 to form MoS2-Mo P/FPC.Red phosphorus provides the P species that can induce the construction of the heterojunction under the reducing atmosphere,along with the generation of a Mo P phase and the splitting of the MoS2 phase.The as-prepared MoS2-Mo P/FPC catalyst offers a low overpotential of 144 mV at a current density of 10 m A cm^-2 and a small Tafel slope of 41 m V dec^-1 for the HER in acidic media,as well as remarkable stability.Apart from the active nature of the hybrid,its outstanding activity is attributed to the MoS2-Mo P heterojunction,and the good charge/mass-transfer ability of porous carbon.This strategy provides a new method to develop and design low-cost and high-performance catalysts for the HER.展开更多
Rational design and facile preparation of low-cost and efficient catalysts for the selective converting of biomass-derived monosaccharides into high value-added chemicals is highly demanded,yet challenging.Herein,we f...Rational design and facile preparation of low-cost and efficient catalysts for the selective converting of biomass-derived monosaccharides into high value-added chemicals is highly demanded,yet challenging.Herein,we first demonstrate a N doped defect-rich carbon(NC-800-5)as metal-free catalyst for the selective oxidation of D-xylose into D-xylonic acid in alkaline aqueous solution at 100℃ for 30 min,with 57.4%yield.The doped graphitic N is found to be the active site and hydroxyl ion participating in the oxidation of D-xylose.Hydroxyl ion and D-xylose first adsorb on NC-800-5 surface,and the aldehyde group of D-xylose is catalyzed to form germinal diols ion.Then,C–H bond break to yield carboxylic group.Furthermore,NC-800-5 catalyst shows high stability in recycled test.展开更多
Carbon aerogels prepared from renewable nano building blocks are rising-star materials and hold great promise in many fields.However,various defects formed during carbonization at high temperature disfavor the stress ...Carbon aerogels prepared from renewable nano building blocks are rising-star materials and hold great promise in many fields.However,various defects formed during carbonization at high temperature disfavor the stress transfer and thus the fabrication of flexible carbon aerogel from renewable nano building blocks.Herein,a structural defect-reducing strategy is proposed by altering the pyrolysis route of cellulose nanofiber.Inorganic salt that inhibits the generation of tar volatilization during pyrolysis can prevent the formation of various structural defects.Microstructure with fewer defects can reduce stress concentration and remarkably enhance the compressibility of carbon aerogel,thus increasing the maximum stress retention of carbon aerogel.The carbon aerogel also has high stress sensor sensitivity and excellent temperature coefficient of resistance.The structural defect-reducing strategy will pave a new way to fabricate high-strength carbon materials for various fields.展开更多
Selective oxidation of biomass-derived monosaccharide into high value-added chemicals is highly desirable from sustainability perspectives.Herein,we demonstrate a surface-functionalized carbon nanotubesupported gold(A...Selective oxidation of biomass-derived monosaccharide into high value-added chemicals is highly desirable from sustainability perspectives.Herein,we demonstrate a surface-functionalized carbon nanotubesupported gold(Au/CNT-O and Au/CNT-N)catalyst for base-free oxidation of monosaccharide into sugar acid.Au/CNT-O and Au/CNT-N surfaces successfully introduced oxygen-and nitrogen-containing functional groups,respectively.The highest yields of gluconic acid and xylonic acid were 93.3%and 94.3%,respectively,using Au/CNT-N at 90℃ for 240 min,which is higher than that of using Au/CNT-O.The rate constants for monosaccharide decomposition and sugar acid formation in Au/CNT-N system were higher,while the corresponding activation energy was lower than in Au/CNT-O system.DFT calculation revealed that the mechanism of glucose oxidation to gluconic acid involves the adsorption and activation of O_(2),adsorption of glucose,dissociation of the formyl C-H bond and formation of O-H bond,and formation and desorption of gluconic acid.The activation energy barrier for the glucose oxidation over Au/CNT-N is lower than that of Au/CNT-O.The nitrogen-containing functional groups are more beneficial for accelerating monosaccharide oxidation and enhancing sugar acid selectivity than oxygen-containing functional groups.This work presents a useful guidance for designing and developing highly active catalysts for producing high-value-added chemicals from biomass.展开更多
Renewable and low-cost biomass is an ideal sustainable alternative to petroleum-based resources,but producing biomass-based carbon electrode with high performances remains a challenge.Herein,we propose a facile self-a...Renewable and low-cost biomass is an ideal sustainable alternative to petroleum-based resources,but producing biomass-based carbon electrode with high performances remains a challenge.Herein,we propose a facile self-assembly strategy to fabricate a biomass-derived N,S co-doping carbon electrode from lignosulfonate without any activation or template process.Taking advantage of the coordination between Fe ions and lignosulfonate,the resultant carbon exhibits a spherical structure with abundant graphitized nanosheets,leading to a high specific surface area with rational pore structure,which are beneficial to the electron/ion transport and storage.The high contents of doping N(8.47 wt%)and S(2.56 wt%)significantly boost the electrochemical performances.As a supercapacitor electrode,the carbon material displays high specific capacitance of 390 F g^(-1),excellent cycling stability and high energy density of 14.7 W h kg^(-1)at a power density of 450 W kg^(-1).This study provides a potential strategy for synthesizing cost-effective heteroatom-doped carbon materials from biomass with abundant functional groups and heteroatom sources,such as chitosan,collagen,and gelatin.展开更多
With the rapid development of wearable and intelligent flexible electronic devices(FEDs),the demand for flexible energy storage/conversion devices(ESCDs)has also increased.Rechargeable flexible metal‐air batteries(MA...With the rapid development of wearable and intelligent flexible electronic devices(FEDs),the demand for flexible energy storage/conversion devices(ESCDs)has also increased.Rechargeable flexible metal‐air batteries(MABs)are expected to be one of the most ideal ESCDs due to their high theoretical energy density,cost advantage,and strong deformation adaptability.With the improvement of the device design,material assemblies,and manufacturing technology,the research on the electrochemical performance of flexible MABs has made significant progress.However,achieving the high mechanical flexibility,high safety,and wearable comfortability required by FEDs while maintaining the high performance of flexible MABs are still a daunting challenge.In this review,flexible Zn‐air and Li‐air batteries are mainly exemplified to describe the most recent progress and challenges of flexible MABs.We start with an overview of the structure and configuration of the flexible MABs and discuss their impact on battery performance and function.Then it focuses on the research progress of flexible metal anodes,gel polymer electrolytes,and air cathodes.Finally,the main challenges and future research perspectives involving flexible MABs for FEDs are proposed.展开更多
Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Her...Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Herein,a wood-based ordered framework is used to fabricate carbon nanotube/poly(3,4-ethylenedioxythiophene)(CNT/PEDOT)wood aerogel for TEG.The prepared CNT/PEDOT wood aerogel with an anisotropic structure exhibits a low thermal conductivity of 0.17 W m^(−1)K^(−1)and is advantageous to develop a sufficient temperature gradient.Meanwhile,CNT/PEDOT composites effectively decouple the relationship between the Seebeck coefficient and electrical conductivity by energy filtering effect to enhance thermoelectric(TE)output properties.The vertical TEG assembled by the CNT/PEDOT wood aerogels reveals an output power of 1.5μW and a mass-specific power of 15.48μW g^(−1)at a temperature difference of 39.4 K.Moreover,the layered structure renders high compressibility and fatigue resistance.The anisotropic structure,high mechanical performance,and rapid thermoelectric response,enabling the TEG based on CNT/PEDOT wood aerogel offer opportunities for continuous power supply to low-power electronic devices.展开更多
Rechargeable aqueous zinc-ion batteries have attracted extensive interest because of low cost and high safety.However,the relationship between structure change of cathode and the zinc ion storage mechanism is still co...Rechargeable aqueous zinc-ion batteries have attracted extensive interest because of low cost and high safety.However,the relationship between structure change of cathode and the zinc ion storage mechanism is still complex and challenging.Herein,open-structured ferric vanadate(Fe_(2)V_(4)O_(13))has been developed as cathode material for aqueous zinc-ion batteries.Intriguingly,two zinc ion storage mechanism can be observed simultaneously for the Fe2V4O13 electrode,i.e.,classical intercalation/deintercalation storage mechanism in the tunnel structure of Fe_(2)V_(4)O_(13),and reversible phase transformation from ferric vanadate to zinc vanadate,which is verified by combined studies using various in-situ and ex-situ techniques.As a result,the Fe_(2)V_(4)O_(13) cathode delivers a high discharge capacity of 380 mAh/g at 0.2 A/g,and stable cyclic performance up to 1000 cycles at 10 A/g in the operating window of 0.2-1.6 V with 2 mol/L Zn(CF_(3)SO_(3))_(2) aqueous solution.Moreover,the assembled Fe_(2)V_(4)O_(13)//Zn flexible quasi-solid-state battery also exhibits a relatively high mechanical strength and good cycling stability.The findings reveal a new perspective of zinc ion storage mechanism for Fe_(2)V_(4)O_(13),which may also be applicable to other vanadate cathodes,providing a new direction for the investigation and design of zinc-ion batteries.展开更多
Interfacial design is one of the most promising ways in improving mechanical properties of nanocomposites.In this work,a multifunctional aerogel with excellent mechanical performances,sensing sensitivity,and fire reta...Interfacial design is one of the most promising ways in improving mechanical properties of nanocomposites.In this work,a multifunctional aerogel with excellent mechanical performances,sensing sensitivity,and fire retardancy is fabricated by taking advantage of metal coordination between biopolymer and Fe3+.Montmorillonite(MMT)nanosheets are added to induce a‘brick and mortar’structure.The coordination remarkably reduces structural defects,leading to well-formed lamellas that can effectively distribute stress under sever compression without plastic deformation.The structural merits impart the aerogel highly reversible compressibility even at 99%strain and superior durability.Besides,it demonstrates high sensing performance in wearable health monitoring devices,and shows fire resistance property that can maintain elasticity in a flame.The work offers a facile and effective method to create multifunctional aerogels from various polymers.展开更多
基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Numbers:2021A1515110245,2022A1515140108,2023B1515040013National Youth Top-notch Talent Support Program,Grant/Award Number:x2qsA4210090+5 种基金Guangzhou Key Research and Development Program,Grant/Award Number:SL2022B03J01256Guangdong Provincial Key Laboratory of Distributed Energy Systems,Grant/Award Number:2020B1212060075Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes,Grant/Award Number:2016GCZX009State Key Laboratory of Pulp and Paper Engineering,Grant/Award Numbers:202215,2022PY02Key projects of social science and technology development in Dongguan,Grant/Award Number:20231800936352National Natural Science Foundation of China,Grant/Award Numbers:21736003,21905044,31971614,32071714。
文摘Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N_(4) sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N_(4)-C(12)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications.
基金support of the Guangdong Basic and Applied Basic Research Foundation(grant nos.2020A1515110705 and 2021A1515110245)the China Postdoctoral Science Foundation(grant nos.2020M682711 and 2020M682710)+2 种基金the National Program for Support of Topnotch Young Professionals(grant no.x2qsA4210090)the National Natural Science Foundation of China(grant no.31971614)the State Key Laboratory of Pulp and Paper Engineering(grant no.2020C03).
文摘Room-temperature sodium–sulfur(RT/Na–S)batteries are regarded as promising large-scale stationary energy storage systems owing to their high energy density and low cost as well as the earth-abundant reserves of sodium and sulfur.However,the diffusion of polysulfides and sluggish kinetics of conversion reactions are still major challenges for their application.Herein,we developed a powerful and functional separator to inhibit the shuttle effect by coating a lightweight three-dimensional cellulose nanofiber-derived carbon aerogel on a glass fiber separator(denoted NSCA@GF).The hierarchical porous structures,favorable electronic conductivity,and three-dimensional interconnected network of N,S-codoped carbon aerogel endow a multifunctional separator with strong polysulfide anchoring capability and fast reaction kinetics of polysulfide conversion,which can act as the barrier layer and an expanded current collector to increase sulfur utilization.Moreover,the hetero-doped N/S sites are believed to strengthen polysulfide anchoring capability via chemisorption and accelerate the redox kinetics of polysulfide conversion,which is confirmed from experimental and theoretical results.As a result,the assembled Na–S coin cells with the NSCA@GF separator showed a high reversible capacity(788.8 mAh g^(−1) at 0.1 C after 100 cycles)and superior cycling stability(only 0.059%capacity decay per cycle over 1000 cycles at 1 C),thereby demonstrating the significant potential for application in high-performance RT/Na–S batteries.
基金the National Natural Science Foundation of China(31430092,21736003)Guangdong Natural Science Funds for Distinguished Young Scholar(2016A030306027,2017A030306029)+2 种基金Guangdong Natural Science Funds(2017A030313130)Guangzhou science and technology funds(201904010078)State Key Laboratory of Pulp and Paper Engineering and Fundamental Research Funds for the Central Universities。
文摘The design and development of electrocatalysts composed of non-noble-metal catalysts with both large surface area and high electrical conductivities are crucial for the hydrogen evolution reaction(HER).Here,a xylose-based porous carbon is coupled with a MoS2-Mo P heterojunction(MoS2-Mo P/FPC)hybrid and used as a promising catalyst for HER.The hybrid is prepared by immobilizing petal-like MoS2 nanosheets on porous carbon(MoS2/FPC),followed by controlling the phosphidation in Ar/H2 to form MoS2-Mo P/FPC.Red phosphorus provides the P species that can induce the construction of the heterojunction under the reducing atmosphere,along with the generation of a Mo P phase and the splitting of the MoS2 phase.The as-prepared MoS2-Mo P/FPC catalyst offers a low overpotential of 144 mV at a current density of 10 m A cm^-2 and a small Tafel slope of 41 m V dec^-1 for the HER in acidic media,as well as remarkable stability.Apart from the active nature of the hybrid,its outstanding activity is attributed to the MoS2-Mo P heterojunction,and the good charge/mass-transfer ability of porous carbon.This strategy provides a new method to develop and design low-cost and high-performance catalysts for the HER.
基金Supported by Fundamental Research Funds for the Central Universities(2019PY13)National Program for Support of Top-notch Young Professionals,Science and Technology Basic Resources Investigation Program of China(2019FY100903)+5 种基金National Natural Science Foundation of China(31971614)Guangdong Natural Science Funds for Distinguished Young Scholar(2016A030306027)Guangdong Natural Science Funds(2017A030313130)Guangzhou science and technology funds(201904010078)State Key Lab of Pulp and Paper Engineering(2020C03)China Postdoctoral Science Foundation Grant(2019T120725,2019M652882).
文摘Rational design and facile preparation of low-cost and efficient catalysts for the selective converting of biomass-derived monosaccharides into high value-added chemicals is highly demanded,yet challenging.Herein,we first demonstrate a N doped defect-rich carbon(NC-800-5)as metal-free catalyst for the selective oxidation of D-xylose into D-xylonic acid in alkaline aqueous solution at 100℃ for 30 min,with 57.4%yield.The doped graphitic N is found to be the active site and hydroxyl ion participating in the oxidation of D-xylose.Hydroxyl ion and D-xylose first adsorb on NC-800-5 surface,and the aldehyde group of D-xylose is catalyzed to form germinal diols ion.Then,C–H bond break to yield carboxylic group.Furthermore,NC-800-5 catalyst shows high stability in recycled test.
基金the National Natural Science Foundation of China(Nos.32201499,22208069 and 32071714)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110205)+1 种基金Fundamental Research Funds for the Central Universities(No.2022ZYGXZR019)the State Key Laboratory of Pulp&Paper Engineering(No.2022C01).
文摘Carbon aerogels prepared from renewable nano building blocks are rising-star materials and hold great promise in many fields.However,various defects formed during carbonization at high temperature disfavor the stress transfer and thus the fabrication of flexible carbon aerogel from renewable nano building blocks.Herein,a structural defect-reducing strategy is proposed by altering the pyrolysis route of cellulose nanofiber.Inorganic salt that inhibits the generation of tar volatilization during pyrolysis can prevent the formation of various structural defects.Microstructure with fewer defects can reduce stress concentration and remarkably enhance the compressibility of carbon aerogel,thus increasing the maximum stress retention of carbon aerogel.The carbon aerogel also has high stress sensor sensitivity and excellent temperature coefficient of resistance.The structural defect-reducing strategy will pave a new way to fabricate high-strength carbon materials for various fields.
基金supported by the National Youth Talent Support Program,National Natural Science Foundation of China(No.31971614)State Key Laboratory of Pulp and Paper Engineering(No.2022PY02)+3 种基金the National Program for Support of Topnotch Young Professionals(No.x2qsA4210090)Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515110205,2021A1515110622,2021A1515110245 and 2020A1515110705)Science and Technology Basic Resources Investigation Program of China(No.2019FY100900)the National Key Research and Development Program of China(No.2021YFC2101604).
文摘Selective oxidation of biomass-derived monosaccharide into high value-added chemicals is highly desirable from sustainability perspectives.Herein,we demonstrate a surface-functionalized carbon nanotubesupported gold(Au/CNT-O and Au/CNT-N)catalyst for base-free oxidation of monosaccharide into sugar acid.Au/CNT-O and Au/CNT-N surfaces successfully introduced oxygen-and nitrogen-containing functional groups,respectively.The highest yields of gluconic acid and xylonic acid were 93.3%and 94.3%,respectively,using Au/CNT-N at 90℃ for 240 min,which is higher than that of using Au/CNT-O.The rate constants for monosaccharide decomposition and sugar acid formation in Au/CNT-N system were higher,while the corresponding activation energy was lower than in Au/CNT-O system.DFT calculation revealed that the mechanism of glucose oxidation to gluconic acid involves the adsorption and activation of O_(2),adsorption of glucose,dissociation of the formyl C-H bond and formation of O-H bond,and formation and desorption of gluconic acid.The activation energy barrier for the glucose oxidation over Au/CNT-N is lower than that of Au/CNT-O.The nitrogen-containing functional groups are more beneficial for accelerating monosaccharide oxidation and enhancing sugar acid selectivity than oxygen-containing functional groups.This work presents a useful guidance for designing and developing highly active catalysts for producing high-value-added chemicals from biomass.
基金supported by Fundamental Research Funds for the Central Universities(Grant No.2022ZYGXZR019)National Natural Science Foundation of China(Grant No.32201499)+1 种基金China Postdoctoral Science Foundation(Grant No.2021M701250)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515110205 and 2023A1515012519).
文摘Renewable and low-cost biomass is an ideal sustainable alternative to petroleum-based resources,but producing biomass-based carbon electrode with high performances remains a challenge.Herein,we propose a facile self-assembly strategy to fabricate a biomass-derived N,S co-doping carbon electrode from lignosulfonate without any activation or template process.Taking advantage of the coordination between Fe ions and lignosulfonate,the resultant carbon exhibits a spherical structure with abundant graphitized nanosheets,leading to a high specific surface area with rational pore structure,which are beneficial to the electron/ion transport and storage.The high contents of doping N(8.47 wt%)and S(2.56 wt%)significantly boost the electrochemical performances.As a supercapacitor electrode,the carbon material displays high specific capacitance of 390 F g^(-1),excellent cycling stability and high energy density of 14.7 W h kg^(-1)at a power density of 450 W kg^(-1).This study provides a potential strategy for synthesizing cost-effective heteroatom-doped carbon materials from biomass with abundant functional groups and heteroatom sources,such as chitosan,collagen,and gelatin.
基金supported by the the National Natural This study was financially supported by the National Youth Top‐notch Talent Support Program,the State Key Laboratory of Pulp and Paper Engineering Funds(2020C03)the National Natural Science Foundation of China(31971614,32071714,21736003,and 52003083)+2 种基金Guangzhou Science and Technology Funds(201904010078 and 202002030167)the China Postdoctoral Science Foundation funded project(2019T120725,2019M652882,2019M662924,2020M682711,and 2020M682710)Guangdong Basic and Applied Basic Research Foundation(2020A1515110705)。
文摘With the rapid development of wearable and intelligent flexible electronic devices(FEDs),the demand for flexible energy storage/conversion devices(ESCDs)has also increased.Rechargeable flexible metal‐air batteries(MABs)are expected to be one of the most ideal ESCDs due to their high theoretical energy density,cost advantage,and strong deformation adaptability.With the improvement of the device design,material assemblies,and manufacturing technology,the research on the electrochemical performance of flexible MABs has made significant progress.However,achieving the high mechanical flexibility,high safety,and wearable comfortability required by FEDs while maintaining the high performance of flexible MABs are still a daunting challenge.In this review,flexible Zn‐air and Li‐air batteries are mainly exemplified to describe the most recent progress and challenges of flexible MABs.We start with an overview of the structure and configuration of the flexible MABs and discuss their impact on battery performance and function.Then it focuses on the research progress of flexible metal anodes,gel polymer electrolytes,and air cathodes.Finally,the main challenges and future research perspectives involving flexible MABs for FEDs are proposed.
基金supported by the National Natural Science Foundation of China(No.32071714)Guangzhou Science and Technology project(No.202002030167)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110910)。
文摘Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Herein,a wood-based ordered framework is used to fabricate carbon nanotube/poly(3,4-ethylenedioxythiophene)(CNT/PEDOT)wood aerogel for TEG.The prepared CNT/PEDOT wood aerogel with an anisotropic structure exhibits a low thermal conductivity of 0.17 W m^(−1)K^(−1)and is advantageous to develop a sufficient temperature gradient.Meanwhile,CNT/PEDOT composites effectively decouple the relationship between the Seebeck coefficient and electrical conductivity by energy filtering effect to enhance thermoelectric(TE)output properties.The vertical TEG assembled by the CNT/PEDOT wood aerogels reveals an output power of 1.5μW and a mass-specific power of 15.48μW g^(−1)at a temperature difference of 39.4 K.Moreover,the layered structure renders high compressibility and fatigue resistance.The anisotropic structure,high mechanical performance,and rapid thermoelectric response,enabling the TEG based on CNT/PEDOT wood aerogel offer opportunities for continuous power supply to low-power electronic devices.
基金financially supported by the China Post-doctoral Science Foundation(Nos.2020M682710,2020M682711,2019M652882 and 2019T120725)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110705)+2 种基金National Program for Support of Top-notch Young Professionals(No.x2qsA4210090)National Natural Science Foundation of China,(No.31971614)State Key Laboratory of Pulp and Paper Engineering(No.2020C03).
文摘Rechargeable aqueous zinc-ion batteries have attracted extensive interest because of low cost and high safety.However,the relationship between structure change of cathode and the zinc ion storage mechanism is still complex and challenging.Herein,open-structured ferric vanadate(Fe_(2)V_(4)O_(13))has been developed as cathode material for aqueous zinc-ion batteries.Intriguingly,two zinc ion storage mechanism can be observed simultaneously for the Fe2V4O13 electrode,i.e.,classical intercalation/deintercalation storage mechanism in the tunnel structure of Fe_(2)V_(4)O_(13),and reversible phase transformation from ferric vanadate to zinc vanadate,which is verified by combined studies using various in-situ and ex-situ techniques.As a result,the Fe_(2)V_(4)O_(13) cathode delivers a high discharge capacity of 380 mAh/g at 0.2 A/g,and stable cyclic performance up to 1000 cycles at 10 A/g in the operating window of 0.2-1.6 V with 2 mol/L Zn(CF_(3)SO_(3))_(2) aqueous solution.Moreover,the assembled Fe_(2)V_(4)O_(13)//Zn flexible quasi-solid-state battery also exhibits a relatively high mechanical strength and good cycling stability.The findings reveal a new perspective of zinc ion storage mechanism for Fe_(2)V_(4)O_(13),which may also be applicable to other vanadate cathodes,providing a new direction for the investigation and design of zinc-ion batteries.
基金financially supported by the Guangzhou Science and Technology Plan Project(No.202002030167)the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(No.2017TQ04Z837)the Fundamental Research Funds for the Central Universities(No.2019PY13)。
文摘Interfacial design is one of the most promising ways in improving mechanical properties of nanocomposites.In this work,a multifunctional aerogel with excellent mechanical performances,sensing sensitivity,and fire retardancy is fabricated by taking advantage of metal coordination between biopolymer and Fe3+.Montmorillonite(MMT)nanosheets are added to induce a‘brick and mortar’structure.The coordination remarkably reduces structural defects,leading to well-formed lamellas that can effectively distribute stress under sever compression without plastic deformation.The structural merits impart the aerogel highly reversible compressibility even at 99%strain and superior durability.Besides,it demonstrates high sensing performance in wearable health monitoring devices,and shows fire resistance property that can maintain elasticity in a flame.The work offers a facile and effective method to create multifunctional aerogels from various polymers.