This review compiles information from the literature on the chemical composition,pharmacological effects,and molecular mechanisms of earthworm extract(EE)and suggests possibilities for clinical translation of EE.We al...This review compiles information from the literature on the chemical composition,pharmacological effects,and molecular mechanisms of earthworm extract(EE)and suggests possibilities for clinical translation of EE.We also consider future trends and concerns in this domain.We summarize the bioactive components of EE,including G-90,lysenin,lumbrokinase,antimicrobial peptides,earthworm serine protease(ESP),and polyphenols,and detail the antitumor,antithrombotic,antiviral,antibacterial,anti-i nflammatory,analgesic,antioxidant,wound-healing,antifibrotic,and hypoglycemic activities and mechanisms of action of EE based on existing in vitro and in vivo studies.We further propose the potential of EE for clinical translation in anticancer and lipid-modifying therapies,and its promise as source of a novel agent for wound healing and resistance to antibiotic tolerance.The earthworm enzyme lumbrokinase embodies highly effective anticoagulant and thrombolytic properties and has the advantage of not causing bleeding phenomena due to hyperfibrinolysis.Its antifibrotic properties can reduce the excessive accumulation of extracellular matrix.The glycolipoprotein extract G-90 can effectively scavenge reactive oxygen groups and protect cellular tissues from oxidative damage.Earthworms have evolved a well-developed defense mechanism to fight against microbial infections,and the bioactive agents in EE have shown good antibacterial,fungal,and viral properties in in vitro and in vivo experiments and can alleviate inflammatory responses caused by infections,effectively reducing pain.Recent studies have also highlighted the role of EE in lowering blood glucose.EE shows high medicinal value and is expected to be a source of many bioactive compounds.展开更多
Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome datab...Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.展开更多
Objective To identify novel biomarkers and therapeutic targets for primary melanoma using network-based microarray data analysis.Methods Eligible microarray datasets from the Gene Expression Omnibus(GEO)database were ...Objective To identify novel biomarkers and therapeutic targets for primary melanoma using network-based microarray data analysis.Methods Eligible microarray datasets from the Gene Expression Omnibus(GEO)database were used to identify differentially expressed genes(DEGs).The protein-protein interaction(PPI)network,Gene Ontology(GO),and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were performed to identify hub genes and pathways that might affect the survival of melanoma patients.Immunohistochemistry results obtained from the Human Protein Atlas(HPA)database confirmed the protein expression levels of hub genes.The Cancer Genome Atlas(TCGA)database was used to further verify the gene expression levels and conduct survival analysis.Results Three microarray datasets(GSE3189,GSE15605,and GSE46517)containing 122 melanoma and 30 normal skin tissue samples were included.A total of 262 common differentially expressed genes(cDEGs)were identified based on three statistical approaches(Fisher’s method,the random effects model(REM),and vote counting)with strict criteria.Of these,two upregulated genes,centromere protein F(CENPF)and pituitary tumortransforming gene 1(PTTG1),were selected as hub genes.HPA and TCGA database analyses confirmed that CENPF and PTTG1 were overexpressed in melanoma.Survival analysis showed that high expression levels of CENPF were significantly correlated with decreased overall survival(OS)(P=0.028).Conclusion The expression level of CENPF was significantly upregulated in melanoma and correlated with decreased OS.Thus,CENPF may represent a novel biomarker and therapeutic target for melanoma patients.展开更多
Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var.(RCC,♀)×Megalobrama amblycephala(BSB,♂),containing four sets of RCC chro...Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var.(RCC,♀)×Megalobrama amblycephala(BSB,♂),containing four sets of RCC chromosomes.However,the molecular mechanism underlying the determination of sex in this species remains largely unknown.Currently,there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species.In this study,25,801,677 SNPs(Singlenucleotide polymorphism)and 6,210,306 Indels(insertion-deletion)were obtained from whole-genome resequencing of 100 individuals(including 50 female and 50 male).Further identification confirmed the candidate chromosomes as Chr46B,with the sex-determining region located at Chr46B:22,500,000‒22,800,000 bp.Based on the male-specific insertion(26 bp)within the candidate sex-determining region,a pair of sex-specific molecular markers has been identified.In addition,based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis,ADAM10,AQP9 and tc1a were identified as candidate sex-determining genes.These findings provide a robust foundation for investigating sex determination mechanisms in fish,the evolution of sex chromosomes,and the development of monosex populations.展开更多
Exciton polaritons in atomically thin transition-metal dichalcogenide microcavities provide a versatile platform for advancing optoelectronic devices and studying the interacting Bosonic physics at ambient conditions....Exciton polaritons in atomically thin transition-metal dichalcogenide microcavities provide a versatile platform for advancing optoelectronic devices and studying the interacting Bosonic physics at ambient conditions.Rationally engineering the favorable properties of polaritons is critically required for the rapidly growing research.Here,we demonstrate the manipulation of nonlinear polaritons with the lithographically defined potential landscapes in monolayer WS_(2)microcavities.The discretization of photoluminescence dispersions and spatially confined patterns indicate the deterministic on-site localization of polaritons by the artificial mesa cavities.Varying the trapping sizes,the polariton-reservoir interaction strength is enhanced by about six times through managing the polariton–exciton spatial overlap.Meanwhile,the coherence of trapped polaritons is significantly improved due to the spectral narrowing and tailored in a picosecond range.Therefore,our work not only offers a convenient approach to manipulating the nonlinearity and coherence of polaritons but also opens up possibilities for exploring many-body phenomena and developing novel polaritonic devices based on 2D materials.展开更多
基金supported by the National Key R&D Program of China(2021YFC2502100,2023YFC3603404,2019YFA0111900)National Natural Science Foundation of China(82072506,82272611,92268115)+7 种基金Hunan Provincial Science Fund for Distinguished Young Scholars(2024JJ2089)Hunan Young Talents of Science and Technology(2021RC3025)Provincial Clinical Medical Technology Innovation Project of Hunan(2023SK2024,2020SK53709)Provincial Natural Science Foundation of Hunan(2020JJ3060)National Natural Science Foundation of Hunan Province(2023JJ30949)National Clinical Research Center for Geriatric Disorders,Xiangya Hospital(2021KFJJ02,2021LNJJ05)the Hunan Provincial Innovation Foundation for Postgraduate(CX20230308,CX20230312)the Independent Exploration and Innovation Project for Postgraduate Students of Central South University(2024ZZTS0163)。
文摘This review compiles information from the literature on the chemical composition,pharmacological effects,and molecular mechanisms of earthworm extract(EE)and suggests possibilities for clinical translation of EE.We also consider future trends and concerns in this domain.We summarize the bioactive components of EE,including G-90,lysenin,lumbrokinase,antimicrobial peptides,earthworm serine protease(ESP),and polyphenols,and detail the antitumor,antithrombotic,antiviral,antibacterial,anti-i nflammatory,analgesic,antioxidant,wound-healing,antifibrotic,and hypoglycemic activities and mechanisms of action of EE based on existing in vitro and in vivo studies.We further propose the potential of EE for clinical translation in anticancer and lipid-modifying therapies,and its promise as source of a novel agent for wound healing and resistance to antibiotic tolerance.The earthworm enzyme lumbrokinase embodies highly effective anticoagulant and thrombolytic properties and has the advantage of not causing bleeding phenomena due to hyperfibrinolysis.Its antifibrotic properties can reduce the excessive accumulation of extracellular matrix.The glycolipoprotein extract G-90 can effectively scavenge reactive oxygen groups and protect cellular tissues from oxidative damage.Earthworms have evolved a well-developed defense mechanism to fight against microbial infections,and the bioactive agents in EE have shown good antibacterial,fungal,and viral properties in in vitro and in vivo experiments and can alleviate inflammatory responses caused by infections,effectively reducing pain.Recent studies have also highlighted the role of EE in lowering blood glucose.EE shows high medicinal value and is expected to be a source of many bioactive compounds.
基金financed by the Anhui Provincial Central Leading Local Science and Technology Development Special Fund Project(202007d06020021)Project of Suzhou Science and Technology Bureau(2021143).
文摘Genes in the glycogen synthase kinase 3(GSK3)family are essential in regulating plant response to stressful conditions.This study employed bioinformatics to uncover the GSK3 gene family from the sunflower genome database.The expressions of GSK3 genes in different tissues and stress treatments,such as salt,drought,and cold,were assessed using transcriptome sequencing and quantitative real-time PCR(qRT-PCR).The study results revealed that the 12 GSK3 genes of sunflower,belonging to four classes(Classes I–IV),contained the GSK3 kinase domain and 11–13 exons.The majority of GSK3 genes were highly expressed in the leaf axil and flower,while their expression levels were relatively lower in the leaf.As a result of salt stress,six of the GSK3 genes(HaSK11,HaSK22,HaSK23,HaSK32,HaSK33,and HaSK41)displayed a notable increase in expression,while HaSK14 and HaSK21 experienced a significant decrease.With regard to drought stress,five of the GSK3 genes(HaSK11,HaSK13,HaSK21,HaSK22,and HaSK33)experienced a remarkable rise in expression.When exposed to cold stress,seven of the GSK3 genes(HaSK11,HaSK12,HaSK13,HaSK32,HaSK33,HaSK41,and HaSK42)showed a substantial increase,whereas HaSK21 and HaSK23 had a sharp decline.This research is of great importance in understanding the abiotic resistance mechanism of sunflowers and developing new varieties with improved stress resistance.
基金This study was funded by the National Natural Science Foundation of China(grant no.81972559)and the Shanghai Shenkang Hospital Development Center Project(project no.HDC2020CR2067B).
文摘Objective To identify novel biomarkers and therapeutic targets for primary melanoma using network-based microarray data analysis.Methods Eligible microarray datasets from the Gene Expression Omnibus(GEO)database were used to identify differentially expressed genes(DEGs).The protein-protein interaction(PPI)network,Gene Ontology(GO),and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were performed to identify hub genes and pathways that might affect the survival of melanoma patients.Immunohistochemistry results obtained from the Human Protein Atlas(HPA)database confirmed the protein expression levels of hub genes.The Cancer Genome Atlas(TCGA)database was used to further verify the gene expression levels and conduct survival analysis.Results Three microarray datasets(GSE3189,GSE15605,and GSE46517)containing 122 melanoma and 30 normal skin tissue samples were included.A total of 262 common differentially expressed genes(cDEGs)were identified based on three statistical approaches(Fisher’s method,the random effects model(REM),and vote counting)with strict criteria.Of these,two upregulated genes,centromere protein F(CENPF)and pituitary tumortransforming gene 1(PTTG1),were selected as hub genes.HPA and TCGA database analyses confirmed that CENPF and PTTG1 were overexpressed in melanoma.Survival analysis showed that high expression levels of CENPF were significantly correlated with decreased overall survival(OS)(P=0.028).Conclusion The expression level of CENPF was significantly upregulated in melanoma and correlated with decreased OS.Thus,CENPF may represent a novel biomarker and therapeutic target for melanoma patients.
基金financially supported by the National Natural Science Foundation of China(32172972)the Science and Technology Innovation Program of Hunan Province(2021RC4028)+1 种基金the Special Funds for Construction of Innovative Provinces in Hunan Province(2021NK1010)Special Science Found of Nansha-South China Agricultural University Fishery Research Institute,Guangzhou,the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,the earmarked fund for HARS(HARS-07)。
文摘Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var.(RCC,♀)×Megalobrama amblycephala(BSB,♂),containing four sets of RCC chromosomes.However,the molecular mechanism underlying the determination of sex in this species remains largely unknown.Currently,there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species.In this study,25,801,677 SNPs(Singlenucleotide polymorphism)and 6,210,306 Indels(insertion-deletion)were obtained from whole-genome resequencing of 100 individuals(including 50 female and 50 male).Further identification confirmed the candidate chromosomes as Chr46B,with the sex-determining region located at Chr46B:22,500,000‒22,800,000 bp.Based on the male-specific insertion(26 bp)within the candidate sex-determining region,a pair of sex-specific molecular markers has been identified.In addition,based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis,ADAM10,AQP9 and tc1a were identified as candidate sex-determining genes.These findings provide a robust foundation for investigating sex determination mechanisms in fish,the evolution of sex chromosomes,and the development of monosex populations.
基金National Natural Science Foundation of China(grant No.12020101003,and 12250710126)funding support from the State Key Laboratory of Low-Dimensional Quantum Physics of Tsinghua University and the Tsinghua University Initiative Scientific Research Program.
文摘Exciton polaritons in atomically thin transition-metal dichalcogenide microcavities provide a versatile platform for advancing optoelectronic devices and studying the interacting Bosonic physics at ambient conditions.Rationally engineering the favorable properties of polaritons is critically required for the rapidly growing research.Here,we demonstrate the manipulation of nonlinear polaritons with the lithographically defined potential landscapes in monolayer WS_(2)microcavities.The discretization of photoluminescence dispersions and spatially confined patterns indicate the deterministic on-site localization of polaritons by the artificial mesa cavities.Varying the trapping sizes,the polariton-reservoir interaction strength is enhanced by about six times through managing the polariton–exciton spatial overlap.Meanwhile,the coherence of trapped polaritons is significantly improved due to the spectral narrowing and tailored in a picosecond range.Therefore,our work not only offers a convenient approach to manipulating the nonlinearity and coherence of polaritons but also opens up possibilities for exploring many-body phenomena and developing novel polaritonic devices based on 2D materials.