F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the...F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin.展开更多
We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynam...We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynamics of hyperchaotic map,a color image encryption scheme is designed.At the end of the encryption process,a DNA mutation operation is used to increase the encoding images’randomness and to improve the encryption algorithm’s security.Finally,simulation experiments,performance analysis,and attack tests are performed to prove the effectiveness and security of the designed algorithm.This work provides the possibility of applying chaos theory and gene theory in image encryption.展开更多
Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the ...Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.展开更多
Intelligent reflecting surfaces(IRSs)constitute passive devices,which are capable of adjusting the phase shifts of their reflected signals,and hence they are suitable for passive beamforming.In this paper,we conceive ...Intelligent reflecting surfaces(IRSs)constitute passive devices,which are capable of adjusting the phase shifts of their reflected signals,and hence they are suitable for passive beamforming.In this paper,we conceive their design with the active beamforming action of multiple-input multipleoutput(MIMO)systems used at the access points(APs)for improving the beamforming gain,where both the APs and users are equipped with multiple antennas.Firstly,we decouple the optimization problem and design the active beamforming for a given IRS configuration.Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program(QCQP).For solving the transformed problem,we give an approximate solution based on the technique of widely used semidefinite relaxation(SDR).We also propose a low-complexity iterative solution.We further prove that it can converge to a locally optimal value.Finally,considering the practical scenario of discrete phase shifts at the IRS,we give the quantization design for IRS elements on basis of the two solutions.Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.展开更多
The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods....The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods.The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites.The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties.The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of ER matrix.The effect of the arrangement of CF tow on the fire performance of the composite is mainly due to the inhibition and obstruction of the tow on the combustion of ER matrix.The influence on the high temperature mechanicalproperties is mainly due to the different arrangement direction of CF tow.The fitting equation of the mechanicalproperties of the samples was obtained.This equation could be used to predict the samples’tensile strength from 25°C to 150℃by comparing with the experimental results.Taking the carbon fiber woven cloth(C)applied in the fuselage material as an example,combining the influencing factors of various parameters in the fire field,some suggestions are put forward combined with the research conclusion.展开更多
Multifunctional additives are widely used to improve crystallization and to passivate defects in perovskite solar cells. The roles of these additives are usually related to the various functional groups contained in s...Multifunctional additives are widely used to improve crystallization and to passivate defects in perovskite solar cells. The roles of these additives are usually related to the various functional groups contained in such additives. Here, we introduce a serious of analogues of amino acids into methylammonium lead iodide perovskites and find they play different roles in the crystallization process despite the fact that these additives share exactly the same terminal groups, namely one amino group and one carboxyl group. The corresponding crystallization pathways are established for the first time via monitoring the time-resolved phase formation and transformation. We find that avoiding the rapid formation of perovskites from precursor solution can facilitate the uniform nucleation and growth of perovskite crystals with enhanced crystallinity and reduced defects. Further, we find the different crystallization behaviors probably arise from the inherent structural characteristic of these additives, leading to different interactions in the precursors. This study unveils the effects of amino acids on the liquid–solid crystallization process and helps better understand the role of multifunctional additives beyond their functional groups.展开更多
Lattice defects induced by ion implantation into SiC have been widely investigated in the decades by various techniques.One of the non-destructive techniques suitable to study the lattice defects in SiC is the optical...Lattice defects induced by ion implantation into SiC have been widely investigated in the decades by various techniques.One of the non-destructive techniques suitable to study the lattice defects in SiC is the optical characterization.In this work,confocal Raman scattering spectroscopy and photoluminescence spectrum have been used to study the effects of 134-keV H_(2)^(+)implantation and thermal treatment in the microstructure of 6H-SiC single crystal.The radiation-induced changes in the microstructure were assessed by integrating Raman-scattering peaks intensity and considering the asymmetry of Raman-scattering peaks.The integrated intensities of Raman scattering spectroscopy and photoluminescence spectrum decrease with increasing the fluence.The recovery of the optical intensities depends on the combination of the implantation temperature and the annealing temperature with the thermal treatment from 700℃to 1100℃.The different characterizations of Raman scattering spectroscopy and photoluminescence spectrum are compared and discussed in this study.展开更多
Transparent solar-blind ultraviolet photodetectors(SBUV PDs)have extensive applications in versatile scenarios,such as optical communication.However,it is still challenging to simultaneously achieve high responsivity,...Transparent solar-blind ultraviolet photodetectors(SBUV PDs)have extensive applications in versatile scenarios,such as optical communication.However,it is still challenging to simultaneously achieve high responsivity,high transparency,and satisfying self-powered capability.Here,we demonstrated high-performance,transparent,and self-powered photoelectrochemical-type(PEC)SBUV PDs based on vertically grown ultrathin In_(2)O_(3) nanosheet arrays(NAs)with a three-dimensional(3D)porous structure.The 3D porous structure simultaneously improves the transmittance in the visible light region,accelerates interfacial reaction kinetics,and promotes photogenerated carrier transport.The performance of In_(2)O_(3) NAs photoanodes exceeds most reported self-powered PEC SBUV PDs,exhibiting a high transmittance of approximately 80%in the visible light region,a high responsivity of 86.15 mA/W for 254 nm light irradiation,a fast response speed of 15/18 ms,and good multicycle stability.The In_(2)O_(3) NAs also show excellent spectral selectivity with an ultrahigh solar-blind rejection ratio of 1319.30,attributed to the quantum confinement effect induced by the ultrathin feature(2-3 nm).Furthermore,In_(2)O_(3) NAs photoanodes show good capability in underwater optical communication.Our work demonstrated that a 3D porous structure is a powerful strategy to synchronously achieve high responsivity and transparency and provides a new perspective for designing high-performance,transparent,and self-powered PEC SBUV PDs.展开更多
Excessive mining and utilization fossil fuels has led to drastic environmental consequences,which will contribute to global warming and cause further climate change with severe consequences for the human population.Th...Excessive mining and utilization fossil fuels has led to drastic environmental consequences,which will contribute to global warming and cause further climate change with severe consequences for the human population.The magnitude of these challenges requires several approaches to develop sustainable alternatives for chemicals and fuels production.In this context,biological processes,mainly microbial fermentation,have gained particular interest.For example,autotrophic gas-fermenting acetogenic bacteria are capable of converting CO,CO_(2) and H_(2) into biomass and multiple metabolites through Wood-Ljungdahl pathway,which can be exploited for large-scale fermentation processes to sustainably produce bulk biochemicals and biofuels(e.g.acetate and ethanol)from syngas.Clostridium autoethanogenum is one representative of these chemoautotrophic bacteria and considered as the model for the gas fermentation.Recently,the development of synthetic biology toolbox for this strain has enabled us to study and genetically improve their metabolic capability in gas fermentation.In this review,we will summarize the recent progress involved in the understanding of physiological mechanism and strain engineering for C.autoethanogenum,and provide our perspectives on the future development about the basic biology and engineering biology of this strain.展开更多
The consumption of non-renewable fossil fuels has directly contributed to a dramatic rise in global carbon dioxide(CO_(2))emissions,posing an ongoing threat to the ecological security of the Earth.Microbial electrosyn...The consumption of non-renewable fossil fuels has directly contributed to a dramatic rise in global carbon dioxide(CO_(2))emissions,posing an ongoing threat to the ecological security of the Earth.Microbial electrosynthesis(MES)is an innovative energy regeneration strategy that offers a gentle and efficient approach to converting CO_(2) into high-value products.The cathode chamber is a vital component of an MES system and its internal factors play crucial roles in improving the performance of the MES system.Therefore,this review aimed to provide a detailed analysis of the key factors related to the cathode chamber in the MES system.The topics covered include inward extracellular electron transfer pathways,cathode materials,applied cathode potentials,catholyte pH,and reactor configuration.In addition,this review analyzes and discusses the challenges and promising avenues for improving the conversion of CO_(2) into high-value products via MES.展开更多
Optical physical unclonable functions(PUFs)have emerged as a promising strategy for effective and unbreakable anti-counterfeiting.However,the unpredictable spatial distribution and broadband spectra of most optical PU...Optical physical unclonable functions(PUFs)have emerged as a promising strategy for effective and unbreakable anti-counterfeiting.However,the unpredictable spatial distribution and broadband spectra of most optical PUFs complicate efficient and accurate verification in practical anti-counterfeiting applications.Here,we propose an optical PUF-based anti-counterfeiting label from perovskite microlaser arrays,where randomness is introduced through vapor-induced microcavity deformation.The initial perovskite microdisk laser arrays with regular positions and uniform sizes are fabricated by femtosecond laser direct ablation.By introducing vapor fumigation to induce random deformations in each microlaser cavity,a laser array with completely uneven excitation thresholds and narrow-linewidth lasing signals is obtained.As a proof of concept,we demonstrated that the post-treated laser array can provide fixed-point and random lasing signals to facilitate information encoding.Furthermore,different emission states of the lasing signal can be achieved by altering the pump energy density to reflect higher capacity information.A threefold PUF(excited under three pump power densities)with a resolution of 5×5 pixels exhibits a high encoding capacity(1.43×10^(45)),making it a promising candidate to achieve efficient authentication and high security with anti-counterfeiting labels.展开更多
Three novel dithienylethenes modified by bifluoroboron β-diketonate fragments have been successfully developed. Upon blue light irradiation, they reached photostationary state within 2-5 s, as well as 100% conversion...Three novel dithienylethenes modified by bifluoroboron β-diketonate fragments have been successfully developed. Upon blue light irradiation, they reached photostationary state within 2-5 s, as well as 100% conversion ratio and photocyclization quantum yield of > 0.70. Such fascinating photochromism were endowed by collaborative role of electron-withdrawing effect of BF_(2)bdk group to reduce HOMO-LUMO electronic gap for the open isomer, together with intramolecular hydrogen bonds and CH-π interactions favoring antiparallel conformation fixation. Moreover, they displayed specific discrimination and photoswitchable bacterial imaging for S. aureus.展开更多
NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was develope...NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was developed from a three dimensional model for a supercritical CFB boiler previously constructed by our group.Based on an analysis of the NOx and N2O conversion processes in a CFB boiler,the primary formation and destruction reactions were introduced into the 2-D model and coupled.The resulting model was validated using data from the Baima 600 MW supercritical CFB boiler,and then applied to a 660 MW ultra-supercritical CFB boiler.The effects of excess air,the secondary air(SA)to(primary air(PA)plus SA)ratio and the SA injection height on NOx and N2O emissions were investigated.The results show that a higher excess air volume increases both NOx and N2O emissions,while increasing the SA/(PA+SA)ratio somewhat reduces both the NOx and N2O concentrations.On the basis of the results of this work,optimal locations for SA injection ports so as to lower NOx and N2O emissions are recommended.展开更多
Designing and fabricating cheap and active bifunctional materials is crucial for the development of renewable energy technologies.In this article,three-dimensional nitrogen-doped porous carbon materials(NDPC-X,in whic...Designing and fabricating cheap and active bifunctional materials is crucial for the development of renewable energy technologies.In this article,three-dimensional nitrogen-doped porous carbon materials(NDPC-X,in which X represents the pyrolysis temperature) were fabricated by simultaneous carbonization and activation of polypyrrole-coated paper towel protected by a silica layer followed by acid etching.The material had a high specific surface area(1,123.40 m^2/g).The as-obtained NDPC-900 displayed outstanding activity as a catalyst for the oxygen reduction reaction(ORR) as well as an electrode with a high specific capacitance in a supercapacitor in an alkaline medium.The NDPC-900 catalyst for the ORR exhibited a more positive reduction peak potential of à0.068 V(vs.Hg|HgCl^2) than that of Pt/C(-0.121 V),as well as better cycling stability and stronger methanol tolerance.Moreover,the NDPC-900 had a high specific capacitance of 379.50 F/g at a current density of 1 A/g,with a retention rate of 94.5% after 10,000 cycles in 6 mol/L KOH electrolyte when used as an electrode in a supercapacitor.All these results were attributed to the effect of a large surface area,which provided electrochemically active sites.This work introduces an effective way to use biomass-derived materials for the synthesis of promising bifunctional carbon material for electrochemical energy conversion and storage devices.展开更多
Observing the morphology of insulating specimen in scanning electron microscope(SEM)is of great significance for the nanoscale semiconductor devices and biological tissues.However,the charging effect will cause image ...Observing the morphology of insulating specimen in scanning electron microscope(SEM)is of great significance for the nanoscale semiconductor devices and biological tissues.However,the charging effect will cause image distortion and abnormal contrast when observing insulating specimen in SEM.A typical solution to this problem is using metal coating or water-removable conductive coating.Unfortunately,in both cases the surface of the specimen is covered by a thin layer of conductive material which hides the real surface morphology and is very difficult to be completely removed after imaging.Here we show a convenient,residue-free,and versatile method to observe real surface morphology of insulating specimen without charging effect in SEM with the help of a nanometer-thick film of super-aligned carbon nanotube(SACNT).This thin layer of SACNT film,like metal,can conduct the surface charge on insulating specimen through the sample stage to the ground,thus eliminating the charging effect.SACNT film can also be used as the conductive tape to carry and immobilize insulating powder or particles during SEM imaging.Different from the metal coating,SACNT film is transparent,so that the real microstructure of the insulating specimen surface can be observed.In addition,SACNT film can be easily attached to and peeled off from the surface of specimen without any residue.This convenient,residue-free,and versatile method can open up new possibilities in nondestructive SEM imaging of a wide variety of insulating materials,semiconductor devices,and biological tissues.展开更多
基金supported by the National Natural Science Foundation of China (32273084)the Special Funds for Construction of Innovative Provinces in Hunan Province,China (2020NK2032)+2 种基金the Natural Science Foundation of Hunan Province,China (2020JJ4368)Innovation Foundation for Postgraduate of Hunan Province,China (CX20220670)Innovation Foundation for Postgraduate of Hunan Agricultural University,China (2022XC010)。
文摘F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin.
基金the National Natural Science Foundation of China(Grant No.62061014)the Provincial Natural Science Foundation of Liaoning(Grant No.2020-MS-274)the Basic Scientific Research Projects of Colleges and Universities of Liaoning Province,China(Grant No.LJKZ0545).
文摘We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynamics of hyperchaotic map,a color image encryption scheme is designed.At the end of the encryption process,a DNA mutation operation is used to increase the encoding images’randomness and to improve the encryption algorithm’s security.Finally,simulation experiments,performance analysis,and attack tests are performed to prove the effectiveness and security of the designed algorithm.This work provides the possibility of applying chaos theory and gene theory in image encryption.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 61722109)the National Natural Science Foundation of China (Grant No. 61571270)the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No. UK-CIAPP\49)
文摘Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.
基金supported in part by the the National Key Research and Development Program of China under No.2019YFB1803200by the National Natural Science Foundation of China(NSFC)under Grant 61620106001 and 61901034.
文摘Intelligent reflecting surfaces(IRSs)constitute passive devices,which are capable of adjusting the phase shifts of their reflected signals,and hence they are suitable for passive beamforming.In this paper,we conceive their design with the active beamforming action of multiple-input multipleoutput(MIMO)systems used at the access points(APs)for improving the beamforming gain,where both the APs and users are equipped with multiple antennas.Firstly,we decouple the optimization problem and design the active beamforming for a given IRS configuration.Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program(QCQP).For solving the transformed problem,we give an approximate solution based on the technique of widely used semidefinite relaxation(SDR).We also propose a low-complexity iterative solution.We further prove that it can converge to a locally optimal value.Finally,considering the practical scenario of discrete phase shifts at the IRS,we give the quantization design for IRS elements on basis of the two solutions.Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.
基金sponsored by Project 51874313 supported by National Natural Science Foundation of China.
文摘The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods.The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites.The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties.The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of ER matrix.The effect of the arrangement of CF tow on the fire performance of the composite is mainly due to the inhibition and obstruction of the tow on the combustion of ER matrix.The influence on the high temperature mechanicalproperties is mainly due to the different arrangement direction of CF tow.The fitting equation of the mechanicalproperties of the samples was obtained.This equation could be used to predict the samples’tensile strength from 25°C to 150℃by comparing with the experimental results.Taking the carbon fiber woven cloth(C)applied in the fuselage material as an example,combining the influencing factors of various parameters in the fire field,some suggestions are put forward combined with the research conclusion.
基金financial support from the National Natural Science Foundation of China (Grant No. 22075094, 12075303 and 11675252)the National Key Research and Development Program of China (Grant No. 2016YFA0201101)the Fundamental Research Funds for the Central Universities。
文摘Multifunctional additives are widely used to improve crystallization and to passivate defects in perovskite solar cells. The roles of these additives are usually related to the various functional groups contained in such additives. Here, we introduce a serious of analogues of amino acids into methylammonium lead iodide perovskites and find they play different roles in the crystallization process despite the fact that these additives share exactly the same terminal groups, namely one amino group and one carboxyl group. The corresponding crystallization pathways are established for the first time via monitoring the time-resolved phase formation and transformation. We find that avoiding the rapid formation of perovskites from precursor solution can facilitate the uniform nucleation and growth of perovskite crystals with enhanced crystallinity and reduced defects. Further, we find the different crystallization behaviors probably arise from the inherent structural characteristic of these additives, leading to different interactions in the precursors. This study unveils the effects of amino acids on the liquid–solid crystallization process and helps better understand the role of multifunctional additives beyond their functional groups.
基金the National Natural Science Foundation of China(Grant No.12075194)the Sichuan Provincial Science and Technology Program,China(Grant No.2020ZYD055)the National Key Research and Development Program of China(Grant No.2017YFE0301306).
文摘Lattice defects induced by ion implantation into SiC have been widely investigated in the decades by various techniques.One of the non-destructive techniques suitable to study the lattice defects in SiC is the optical characterization.In this work,confocal Raman scattering spectroscopy and photoluminescence spectrum have been used to study the effects of 134-keV H_(2)^(+)implantation and thermal treatment in the microstructure of 6H-SiC single crystal.The radiation-induced changes in the microstructure were assessed by integrating Raman-scattering peaks intensity and considering the asymmetry of Raman-scattering peaks.The integrated intensities of Raman scattering spectroscopy and photoluminescence spectrum decrease with increasing the fluence.The recovery of the optical intensities depends on the combination of the implantation temperature and the annealing temperature with the thermal treatment from 700℃to 1100℃.The different characterizations of Raman scattering spectroscopy and photoluminescence spectrum are compared and discussed in this study.
基金support from Fundamental Research Funds for the Central Universities(No.2572023AW26)the Innovation Foundation for the Doctoral Program of Forestry Engineering of Northeast Forestry University(No.LYGC202227).
文摘Transparent solar-blind ultraviolet photodetectors(SBUV PDs)have extensive applications in versatile scenarios,such as optical communication.However,it is still challenging to simultaneously achieve high responsivity,high transparency,and satisfying self-powered capability.Here,we demonstrated high-performance,transparent,and self-powered photoelectrochemical-type(PEC)SBUV PDs based on vertically grown ultrathin In_(2)O_(3) nanosheet arrays(NAs)with a three-dimensional(3D)porous structure.The 3D porous structure simultaneously improves the transmittance in the visible light region,accelerates interfacial reaction kinetics,and promotes photogenerated carrier transport.The performance of In_(2)O_(3) NAs photoanodes exceeds most reported self-powered PEC SBUV PDs,exhibiting a high transmittance of approximately 80%in the visible light region,a high responsivity of 86.15 mA/W for 254 nm light irradiation,a fast response speed of 15/18 ms,and good multicycle stability.The In_(2)O_(3) NAs also show excellent spectral selectivity with an ultrahigh solar-blind rejection ratio of 1319.30,attributed to the quantum confinement effect induced by the ultrathin feature(2-3 nm).Furthermore,In_(2)O_(3) NAs photoanodes show good capability in underwater optical communication.Our work demonstrated that a 3D porous structure is a powerful strategy to synchronously achieve high responsivity and transparency and provides a new perspective for designing high-performance,transparent,and self-powered PEC SBUV PDs.
基金supported by the Shenzhen Science and Technology Program(Grant No.JCYJ20210324101014036).
文摘Excessive mining and utilization fossil fuels has led to drastic environmental consequences,which will contribute to global warming and cause further climate change with severe consequences for the human population.The magnitude of these challenges requires several approaches to develop sustainable alternatives for chemicals and fuels production.In this context,biological processes,mainly microbial fermentation,have gained particular interest.For example,autotrophic gas-fermenting acetogenic bacteria are capable of converting CO,CO_(2) and H_(2) into biomass and multiple metabolites through Wood-Ljungdahl pathway,which can be exploited for large-scale fermentation processes to sustainably produce bulk biochemicals and biofuels(e.g.acetate and ethanol)from syngas.Clostridium autoethanogenum is one representative of these chemoautotrophic bacteria and considered as the model for the gas fermentation.Recently,the development of synthetic biology toolbox for this strain has enabled us to study and genetically improve their metabolic capability in gas fermentation.In this review,we will summarize the recent progress involved in the understanding of physiological mechanism and strain engineering for C.autoethanogenum,and provide our perspectives on the future development about the basic biology and engineering biology of this strain.
基金supported by grants from National Natural Science Foundation of China (32070097 and 91951202)National Key Research and Development Program of China (2019YFA0904800).
文摘The consumption of non-renewable fossil fuels has directly contributed to a dramatic rise in global carbon dioxide(CO_(2))emissions,posing an ongoing threat to the ecological security of the Earth.Microbial electrosynthesis(MES)is an innovative energy regeneration strategy that offers a gentle and efficient approach to converting CO_(2) into high-value products.The cathode chamber is a vital component of an MES system and its internal factors play crucial roles in improving the performance of the MES system.Therefore,this review aimed to provide a detailed analysis of the key factors related to the cathode chamber in the MES system.The topics covered include inward extracellular electron transfer pathways,cathode materials,applied cathode potentials,catholyte pH,and reactor configuration.In addition,this review analyzes and discusses the challenges and promising avenues for improving the conversion of CO_(2) into high-value products via MES.
基金National Natural Science Foundation of China (61925506)Natural Science Foundation of Shanghai (20JC1414605)+1 种基金Hangzhou Science and Technology Bureau of Zhejiang Province (TD2020002)Academic/Technology Research Leader Program of Shanghai (23XD1404500)。
文摘Optical physical unclonable functions(PUFs)have emerged as a promising strategy for effective and unbreakable anti-counterfeiting.However,the unpredictable spatial distribution and broadband spectra of most optical PUFs complicate efficient and accurate verification in practical anti-counterfeiting applications.Here,we propose an optical PUF-based anti-counterfeiting label from perovskite microlaser arrays,where randomness is introduced through vapor-induced microcavity deformation.The initial perovskite microdisk laser arrays with regular positions and uniform sizes are fabricated by femtosecond laser direct ablation.By introducing vapor fumigation to induce random deformations in each microlaser cavity,a laser array with completely uneven excitation thresholds and narrow-linewidth lasing signals is obtained.As a proof of concept,we demonstrated that the post-treated laser array can provide fixed-point and random lasing signals to facilitate information encoding.Furthermore,different emission states of the lasing signal can be achieved by altering the pump energy density to reflect higher capacity information.A threefold PUF(excited under three pump power densities)with a resolution of 5×5 pixels exhibits a high encoding capacity(1.43×10^(45)),making it a promising candidate to achieve efficient authentication and high security with anti-counterfeiting labels.
基金financial support from the Natural Science Foundation of Henan Province(No.222300420501)the Science and Technology Project of Henan Province(No.212102210549)+1 种基金the Key Scientific Research Project of Higher Education of Henan Province(No.22A430007)National College Students Innovation and Entrepreneurship Training Program(No.202110482010)。
文摘Three novel dithienylethenes modified by bifluoroboron β-diketonate fragments have been successfully developed. Upon blue light irradiation, they reached photostationary state within 2-5 s, as well as 100% conversion ratio and photocyclization quantum yield of > 0.70. Such fascinating photochromism were endowed by collaborative role of electron-withdrawing effect of BF_(2)bdk group to reduce HOMO-LUMO electronic gap for the open isomer, together with intramolecular hydrogen bonds and CH-π interactions favoring antiparallel conformation fixation. Moreover, they displayed specific discrimination and photoswitchable bacterial imaging for S. aureus.
基金This work was supported by the National Key Research&Devel-opment Program of China(No.2016YFB0600202-2).
文摘NOx and N2O emissions from an ultra-supercritical circulating fluidized bed(CFB)boiler were predicted using a two dimensional(2-D)comprehensive computational fluid dynamics(CFD)combustion model.This model was developed from a three dimensional model for a supercritical CFB boiler previously constructed by our group.Based on an analysis of the NOx and N2O conversion processes in a CFB boiler,the primary formation and destruction reactions were introduced into the 2-D model and coupled.The resulting model was validated using data from the Baima 600 MW supercritical CFB boiler,and then applied to a 660 MW ultra-supercritical CFB boiler.The effects of excess air,the secondary air(SA)to(primary air(PA)plus SA)ratio and the SA injection height on NOx and N2O emissions were investigated.The results show that a higher excess air volume increases both NOx and N2O emissions,while increasing the SA/(PA+SA)ratio somewhat reduces both the NOx and N2O concentrations.On the basis of the results of this work,optimal locations for SA injection ports so as to lower NOx and N2O emissions are recommended.
基金supported by the National Natural Science Foundation of China(51473008,51672019)the National Key Research and Development Program of China(2017YFA0206900)the 111 Project(B14009)
文摘Designing and fabricating cheap and active bifunctional materials is crucial for the development of renewable energy technologies.In this article,three-dimensional nitrogen-doped porous carbon materials(NDPC-X,in which X represents the pyrolysis temperature) were fabricated by simultaneous carbonization and activation of polypyrrole-coated paper towel protected by a silica layer followed by acid etching.The material had a high specific surface area(1,123.40 m^2/g).The as-obtained NDPC-900 displayed outstanding activity as a catalyst for the oxygen reduction reaction(ORR) as well as an electrode with a high specific capacitance in a supercapacitor in an alkaline medium.The NDPC-900 catalyst for the ORR exhibited a more positive reduction peak potential of à0.068 V(vs.Hg|HgCl^2) than that of Pt/C(-0.121 V),as well as better cycling stability and stronger methanol tolerance.Moreover,the NDPC-900 had a high specific capacitance of 379.50 F/g at a current density of 1 A/g,with a retention rate of 94.5% after 10,000 cycles in 6 mol/L KOH electrolyte when used as an electrode in a supercapacitor.All these results were attributed to the effect of a large surface area,which provided electrochemically active sites.This work introduces an effective way to use biomass-derived materials for the synthesis of promising bifunctional carbon material for electrochemical energy conversion and storage devices.
基金supported by the National Key Research and Development Program of China(No.2018YFA0208400)the National Natural Science Foundation of China(NSFC)(Nos.51788104 and 51727805).
文摘Observing the morphology of insulating specimen in scanning electron microscope(SEM)is of great significance for the nanoscale semiconductor devices and biological tissues.However,the charging effect will cause image distortion and abnormal contrast when observing insulating specimen in SEM.A typical solution to this problem is using metal coating or water-removable conductive coating.Unfortunately,in both cases the surface of the specimen is covered by a thin layer of conductive material which hides the real surface morphology and is very difficult to be completely removed after imaging.Here we show a convenient,residue-free,and versatile method to observe real surface morphology of insulating specimen without charging effect in SEM with the help of a nanometer-thick film of super-aligned carbon nanotube(SACNT).This thin layer of SACNT film,like metal,can conduct the surface charge on insulating specimen through the sample stage to the ground,thus eliminating the charging effect.SACNT film can also be used as the conductive tape to carry and immobilize insulating powder or particles during SEM imaging.Different from the metal coating,SACNT film is transparent,so that the real microstructure of the insulating specimen surface can be observed.In addition,SACNT film can be easily attached to and peeled off from the surface of specimen without any residue.This convenient,residue-free,and versatile method can open up new possibilities in nondestructive SEM imaging of a wide variety of insulating materials,semiconductor devices,and biological tissues.