The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechani...The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.展开更多
Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e...Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.展开更多
The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals an...The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.展开更多
Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface ...Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.展开更多
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ...This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.展开更多
Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat...Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.展开更多
With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control...With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control synthesis routes based on repetitive experiments are often costly and inefficient,which is unsuitable for the broader application of novel materials.The development of machine learning and its combination with materials design offers a potential pathway for optimizing materials.Here,we present a design synthesis paradigm for developing high energy Ni-rich cathodes with thermal/kinetic simulation and propose a coupled image-morphology machine learning model.The paradigm can accurately predict the reaction conditions required for synthesizing cathode precursors with specific morphologies,helping to shorten the experimental duration and costs.After the model-guided design synthesis,cathode materials with different morphological characteristics can be obtained,and the best shows a high discharge capacity of 206 mAh g^(−1)at 0.1C and 83%capacity retention after 200 cycles.This work provides guidance for designing cathode materials for lithium-ion batteries,which may point the way to a fast and cost-effective direction for controlling the morphology of all types of particles.展开更多
The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Her...The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH_(2) groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications.展开更多
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil...Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.展开更多
Objective:To evaluate the effectiveness and safety of modified Xiaoyao powder for postpartum depression(PPD)by conducting a systematic review of randomized controlled trials(RCTs).Methods:The Chinese National Knowledg...Objective:To evaluate the effectiveness and safety of modified Xiaoyao powder for postpartum depression(PPD)by conducting a systematic review of randomized controlled trials(RCTs).Methods:The Chinese National Knowledge Infrastructure Databases(CNKI),the Chinese Scientific Journals Database(VIP),Wanfang,Google Scholar,the SinoMed,Embase,Cochrane Library,and PubMed databases were searched from their inception to April 25,2023.The Cochrane Risk of Bias tool was used to assess the quality of the trials.We applied the risk ratio to present dichotomous data and the mean difference to present continuous data.Data with similar characteristics were pooled for meta-analysis and heterogeneity was assessed using I2.Results:This review included 35 trials involving 2848 participants.The quality of the included studies was low(unclear randomization processes and insufficient reporting of blinding).Participants treated with modified Xiaoyao powder plus Western medicine showed lower Hamilton Depression Scale(HAMD)depression score than those who used Western medicine alone(mean difference=-2.15;95%confidence interval:-2.52 to 1.78;P<.00001),and higher effective rate(relative risk=1.19;95%confidence interval:1.15 to 1.24;P<.00001),When comparing modified Xiaoyao alone with Western medicine,the HAMD depression score remained low,however,the efficacy rate was higher in the modified Xiaoyao group.Regarding adverse events,the modified Xiaoyao group reported weight gain,nausea,and diarrhea,but no severe adverse events were reported.Conclusion:Modified Xiaoyao may help relieve depression in PPD when used alone or in combination with Western medicine,with minor side effects.Therefore,future high-quality,large-sample size RCTs are warranted.展开更多
In this study, we present a representative case of multiple glomuvenous malformation in a 12-year-old female patient. Approximately five years ago, the patient developed multiple blue-purple papules and plaques on her...In this study, we present a representative case of multiple glomuvenous malformation in a 12-year-old female patient. Approximately five years ago, the patient developed multiple blue-purple papules and plaques on her hypogastrium and right thigh, which progressively enlarged and presented tenderness. Histopathological examination confirmed the diagnosis of glomuvenous malformation. Following two injections of lauromacrogol, a significant improvement was observed in the lesions, including a resolution of tenderness. These findings suggest that sclerotherapy not only exhibits evident therapeutic efficacy but also effectively alleviates pain while addressing both aesthetic and therapeutic concerns.展开更多
Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of...Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of solid–liquid phase change materials.Herein,we report for the first time a versatile strategy for designed assembly of high-enthalpy flexible phase change nonwovens(GB-PCN)by wet-spinning hybrid grapheneboron nitride(GB)fiber and subsequent impregnating paraffins(e.g.,eicosane,octadecane).As a result,our GB-PCN exhibited an unprecedented enthalpy value of 206.0 J g^(−1),excellent thermal reliability and anti-leakage capacity,superb thermal cycling ability of 97.6%after 1000 cycles,and ultrahigh water vapor permeability(close to the cotton),outperforming the reported PCM films and fibers to date.Notably,the wearable thermal management systems based on GB-PCN for both clothing and face mask were demonstrated,which can maintain the human body at a comfortable temperature range for a significantly long time.Therefore,our results demonstrate huge potential of GB-PCN for human-wearable passive thermal management in real scenarios.展开更多
While boron nitride(BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties,a...While boron nitride(BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties,a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interracial interaction causing severe phonon scattering.Here,we report a novel surface modification strategy called the "self-modified nanointerface" using BN nanocrystals(BNNCs) to efficiently link the interface between BN and the polymer matrix.Combining with ice-press assembly method,an only 25 wt% BNembedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m-1K-1but also,more importantly,achieve a through-plane thermal conductivity as high as 21.3 W m-1K-1,which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers,the strong interaction between the self-modified fillers and polymer matrix,as well as ladder-structured BN skeleton.The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU.This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites.展开更多
Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by inte...Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by interfacial instability with electrolytes under high voltage for long cyclic life.Herein,by combining both firstprinciple calculations and time-of-flight secondary ion mass spectrometry(TOF-SIMS),a novel surface fluorinated reconstruction(SFR)mechanism is proposed to improve the interfacial stability under high voltage,which could effectively regulate the surface fluoride species to desensitize the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)interface.We demonstrate here that by tuning the ratio of fluoride species,the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)/Li battery could achieve excellent long-term and high voltage performance(163.5 mA h g^(-1)at 0.5 C for 300 cycles under 4.4 V),while the controlled sample decayed to 125.4 mA h g^(-1)after 300 cycles.Moreover,the favorable cross-talk effect induced by SFR further facilitates the incorporation of suitable amounts of Ni ions into the construction of stable solid electrolyte interface(SEI)layer for anode surface.Therefore,the ultra-long cycling stability under high voltage can be achieved by the robust cathode/electrolyte and Li/electrolyte interfaces,which results in excellent interfacial stability after long cycling.This work provides new insights into the surface design of cathode materials and improves the stability of the electrode-electrode interface under high voltage.展开更多
Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aero...Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.展开更多
LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechani...LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81870732(to DZ),82171161(to DZ),81900933(to YS),and 82000978(to ZL).
文摘The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.
基金funded by the Research Fund of State Key Laboratory of Mesoscience and Engineering (MESO-23-T03)the National Natural Science Foundation (22278423)+1 种基金the National Key Research and Development Program of China (2022YFB3805602)the Science Foundation of China University of Petroleum,Beijing (2462021QNXZ007)。
文摘Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.
基金supported by the National Key Research and Development Project(Grant No.2018YFC2001100).
文摘The matrix thermal properties have an important impact on laser-induced plasma,as the thermal effect dominates the interaction between ns-pulsed laser and matter,especially in metals.We used a series of pure metals and aluminum alloys to measure plasma temperature and electron density through laser-induced breakdown spectroscopy,in order to investigate the effect of matrix thermal properties on laser-induced plasma.In pure metals,a significant negative linear correlation was observed between the matrix thermal storage coefficient and plasma temperature,while a weak correlation was observed with electron density.The results indicate that metals with low thermal conductivity or specific heat capacity require less laser energy for thermal diffusion or melting and evaporation,resulting in higher ablation rates and higher plasma temperatures.However,considering ionization energy,thermal effects may be a secondary factor affecting electron density.The experiment of aluminum alloy further confirms the influence of thermal conductivity on plasma temperature and its mechanism explanation.
基金National Natural Science Foundation of China (62104136, 22179051, 62204098, 52104258)Project of Shandong Province Higher Educational Young Innovative Team (2022KJ218)+3 种基金China Postdoctoral Science Foundation (2023M732104)Qingdao Postdoctoral Funding Program (QDBSH20220201002)Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202303032)Shandong Provincial Natural Science Foundation (ZR2021ME016)。
文摘Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272257,12102292,12032006)the special fund for Science and Technology Innovation Teams of Shanxi Province(Nos.202204051002006).
文摘This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated.
基金This work is supported by the National Natural Science Foundation of China(No.61904151)the National Key Research and Development Program of China(No.2021YFA1200803)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-020).
文摘Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.
基金supported by the National Natural Science Foundation of China(52072036)the Key Research and Development Program of Henan province,China(231111242500).
文摘With the widespread use of lithium-ion batteries in electric vehicles,energy storage,and mobile terminals,there is an urgent need to develop cathode materials with specific properties.However,existing material control synthesis routes based on repetitive experiments are often costly and inefficient,which is unsuitable for the broader application of novel materials.The development of machine learning and its combination with materials design offers a potential pathway for optimizing materials.Here,we present a design synthesis paradigm for developing high energy Ni-rich cathodes with thermal/kinetic simulation and propose a coupled image-morphology machine learning model.The paradigm can accurately predict the reaction conditions required for synthesizing cathode precursors with specific morphologies,helping to shorten the experimental duration and costs.After the model-guided design synthesis,cathode materials with different morphological characteristics can be obtained,and the best shows a high discharge capacity of 206 mAh g^(−1)at 0.1C and 83%capacity retention after 200 cycles.This work provides guidance for designing cathode materials for lithium-ion batteries,which may point the way to a fast and cost-effective direction for controlling the morphology of all types of particles.
基金National Natural Science Foundation of China,Grant/Award Number:22179006Natural Science Foundation of Zhejiang Province,Grant/Award Number:LQ23E020002+4 种基金National Natural Science Foundation of China,Grant/Award Numbers:52202284,52072036Cooperation between Industry and Education Project of Ministry of Education,Grant/Award Number:220601318235513WenZhou Natural Science Foundation,Grant/Award Numbers:G20220019,G20220021State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Grant/Award Number:EIPE22208Key Research and Development Program of Henan province,China,Grant/Award Number:231111242500。
文摘The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH_(2) groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications.
基金supported by the National Natural Science Foundation of China(No.12102256).
文摘Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications.
基金supported by the State Administration of Traditional Chinese Medicine High-level Key Discipline Construction Project of Traditional Chinese Medicine-Beijing University of Traditional Chinese Medicine Combined Fundamentals of Chinese and Western Medicine(Pharmacology Discipline,Project No.zyyzdxk-2023256).
文摘Objective:To evaluate the effectiveness and safety of modified Xiaoyao powder for postpartum depression(PPD)by conducting a systematic review of randomized controlled trials(RCTs).Methods:The Chinese National Knowledge Infrastructure Databases(CNKI),the Chinese Scientific Journals Database(VIP),Wanfang,Google Scholar,the SinoMed,Embase,Cochrane Library,and PubMed databases were searched from their inception to April 25,2023.The Cochrane Risk of Bias tool was used to assess the quality of the trials.We applied the risk ratio to present dichotomous data and the mean difference to present continuous data.Data with similar characteristics were pooled for meta-analysis and heterogeneity was assessed using I2.Results:This review included 35 trials involving 2848 participants.The quality of the included studies was low(unclear randomization processes and insufficient reporting of blinding).Participants treated with modified Xiaoyao powder plus Western medicine showed lower Hamilton Depression Scale(HAMD)depression score than those who used Western medicine alone(mean difference=-2.15;95%confidence interval:-2.52 to 1.78;P<.00001),and higher effective rate(relative risk=1.19;95%confidence interval:1.15 to 1.24;P<.00001),When comparing modified Xiaoyao alone with Western medicine,the HAMD depression score remained low,however,the efficacy rate was higher in the modified Xiaoyao group.Regarding adverse events,the modified Xiaoyao group reported weight gain,nausea,and diarrhea,but no severe adverse events were reported.Conclusion:Modified Xiaoyao may help relieve depression in PPD when used alone or in combination with Western medicine,with minor side effects.Therefore,future high-quality,large-sample size RCTs are warranted.
文摘In this study, we present a representative case of multiple glomuvenous malformation in a 12-year-old female patient. Approximately five years ago, the patient developed multiple blue-purple papules and plaques on her hypogastrium and right thigh, which progressively enlarged and presented tenderness. Histopathological examination confirmed the diagnosis of glomuvenous malformation. Following two injections of lauromacrogol, a significant improvement was observed in the lesions, including a resolution of tenderness. These findings suggest that sclerotherapy not only exhibits evident therapeutic efficacy but also effectively alleviates pain while addressing both aesthetic and therapeutic concerns.
基金supported by the National Natural Science Foundation of China(Nos.21903082,22003065,22125903,51872283,22075279,21805273,22273100)Dalian Innovation Support Plan for High Level Talents(2019RT09)+3 种基金Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019)DICP(DICP I2020032,DICP I202036,I202218)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,YLU-DNL 2021007,YLU-DNL 2021009)Q.Shi would like to thank Dalian Outstanding Young Scientific Talent Program(Grant 2019RJ10).
文摘Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of solid–liquid phase change materials.Herein,we report for the first time a versatile strategy for designed assembly of high-enthalpy flexible phase change nonwovens(GB-PCN)by wet-spinning hybrid grapheneboron nitride(GB)fiber and subsequent impregnating paraffins(e.g.,eicosane,octadecane).As a result,our GB-PCN exhibited an unprecedented enthalpy value of 206.0 J g^(−1),excellent thermal reliability and anti-leakage capacity,superb thermal cycling ability of 97.6%after 1000 cycles,and ultrahigh water vapor permeability(close to the cotton),outperforming the reported PCM films and fibers to date.Notably,the wearable thermal management systems based on GB-PCN for both clothing and face mask were demonstrated,which can maintain the human body at a comfortable temperature range for a significantly long time.Therefore,our results demonstrate huge potential of GB-PCN for human-wearable passive thermal management in real scenarios.
基金the National Natural Science Foundation of China(52173072,51721002 and 52033003)Natural Science Foundation of Shanghai(22ZR1403700).
文摘While boron nitride(BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties,a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interracial interaction causing severe phonon scattering.Here,we report a novel surface modification strategy called the "self-modified nanointerface" using BN nanocrystals(BNNCs) to efficiently link the interface between BN and the polymer matrix.Combining with ice-press assembly method,an only 25 wt% BNembedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m-1K-1but also,more importantly,achieve a through-plane thermal conductivity as high as 21.3 W m-1K-1,which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers,the strong interaction between the self-modified fillers and polymer matrix,as well as ladder-structured BN skeleton.The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU.This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites.
基金supported by the National Natural Science Foundation of China(22209012,52072036)the fellowship of China Postdoctoral Science Foundation(2020M680374)。
文摘Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by interfacial instability with electrolytes under high voltage for long cyclic life.Herein,by combining both firstprinciple calculations and time-of-flight secondary ion mass spectrometry(TOF-SIMS),a novel surface fluorinated reconstruction(SFR)mechanism is proposed to improve the interfacial stability under high voltage,which could effectively regulate the surface fluoride species to desensitize the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)interface.We demonstrate here that by tuning the ratio of fluoride species,the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)/Li battery could achieve excellent long-term and high voltage performance(163.5 mA h g^(-1)at 0.5 C for 300 cycles under 4.4 V),while the controlled sample decayed to 125.4 mA h g^(-1)after 300 cycles.Moreover,the favorable cross-talk effect induced by SFR further facilitates the incorporation of suitable amounts of Ni ions into the construction of stable solid electrolyte interface(SEI)layer for anode surface.Therefore,the ultra-long cycling stability under high voltage can be achieved by the robust cathode/electrolyte and Li/electrolyte interfaces,which results in excellent interfacial stability after long cycling.This work provides new insights into the surface design of cathode materials and improves the stability of the electrode-electrode interface under high voltage.
基金the support from National Natural Science Foundation of China (22179006)International Science & Technology Cooperation Program of China under Contract No.2019YFE0100200+3 种基金National Natural Science Foundation of China (52072036)NSAF (No.U1930113)Guangdong Key Laboratory of Battery Safety,China (No.2019B121203008)China Postdoctoral Science Foundation (No.2021TQ0034)。
文摘Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.
基金the financial support from the Research and Development Plan Project in Key Fields of Guangdong Province(2020B0101030005)Applied Special Project of Guangdong Provincial Science and Technology Plan(2017B090917002)+1 种基金Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120027)Key R&D projects in Guangdong Province(2020B0101030005)。
文摘LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs.