Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Fur...Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.展开更多
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio...Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.展开更多
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication.Cell–cell communication(CCC)is essential for growth,development,differentiation,tissue and organ f...Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication.Cell–cell communication(CCC)is essential for growth,development,differentiation,tissue and organ formation,maintenance,and physiological regulation.Cells communicate through direct contact or at a distance using ligand–receptor interactions.So cellular communication encompasses two essential processes:cell signal conduction for generation and intercellular transmission of signals,and cell signal transduction for reception and procession of signals.Deciphering intercellular communication networks is critical for understanding cell differentiation,development,and metabolism.First,we comprehensively review the historical milestones in CCC studies,followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions.Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications.Finally,we summarize various methods for monitoring cell interactions,including cell imaging,proximity-based chemical labeling,mechanical force analysis,downstream analysis strategies,and single-cell technologies.These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes,including tissue homeostasis,cell development,and immune responses in diseases.In addition,this review enhances our understanding of the biological processes that occur after cell–cell binding,highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine.This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.展开更多
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o...The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.展开更多
Bismuth-based perovskites are considered to be promising candidates to substitute the toxic lead-based perovskite in optoelectronics due to their excellent optoelectronic properties,high environmental friendliness,and...Bismuth-based perovskites are considered to be promising candidates to substitute the toxic lead-based perovskite in optoelectronics due to their excellent optoelectronic properties,high environmental friendliness,and(moisture,light,and heat)stability.However,there are still few reports about high performance bismuth-based perovskite ultraviolet photodetectors,and is more lacking in ultraviolet imaging demonstration.Herein,we reported a self-powered NiO_(x)/Cs_(3)Bi_(2)Br_(9) heterojunction photodetector with excellent photodetection performance by electrochemical depositing NiOx as the hole transport layer.The optimized NiO_(x)/CsaBi_(2)Brg heterojunction photodetector exhibits excellent ultraviolet detection performance with a fast response speed of 3.04/4.65 ms,wide linear dynamic range of 116.6 dB,decent responsivity of 4.33 mA·W^(-1) at 0 V bias,and high detectivity of 1.3×10^(11) jones.The outstanding performance of the optimized NiO_(x)/Cs_(3)Bi_(2)Br_(9) heterojunction photodetector is enough to meet the high-quality ultraviolet imaging.Therefore,we further integrated the optimized NiO_(x)/Cs_(3)Bi_(2)Br_(9) heterojunction photodetector to the transmission mode ultraviolet multispectral imaging system,achieving admirable imaging results at weak light condition.This work will play a positive role in promoting the development of bismuth-based ultraviolet photodetection and ultraviolet multispectral imaging.展开更多
基金financially supported by the Research Grants Council of Hong Kong SAR(16200720)Environment and Conservation Fund of Hong Kong SAR(Project No.21/2022)+2 种基金Young Scientists Fund of National Natural Science Foundation of China(Grant No.52303106)Research Institute for Advanced Manufucturing(Project No.CD8R)the startup fund for new recruits of PolyU(Project Nos.P0038855 and P0038858)。
文摘Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity.It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation.Furthermore,downward salt ion transport is also desired to prevent salt accumulation.However,achieving simultaneously fast water uptake,downward salt transport,and heat localization is challenging due to highly coupled water,mass,and thermal transport.Here,we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water,salt,and thermal transport.The arched aerogel features root-like,fan-shaped microchannels for rapid water uptake and downward salt diffusion,and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss.These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m^(-2) h^(-1) under one-sun illumination in a 3.5 wt%NaCl solution for 7 days without degradation.Even in a high-salinity solution of 20 wt%NaCl,the evaporation rates maintained stable at 1.94 kg m^(-2) h^(-1) for 8 h without salt crystal formation.This work offers a novel microstructural design to address the complex interplay of water,salt,and thermal transport.
基金The National Natural Science Foundation of China under contract Nos 61890964 and 42206177the Joint Funds of the National Natural Science Foundation of China under contract No.U1906217.
文摘Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.
基金supported by funding from the National Natural Science Foundation of China[Y.S.,No.82300433,F.M.,No.32170656]Beijing Nova Program[F.M.,Z211100002121039]+1 种基金Beijing Municipal Natural Science Foundation[Y.S.,No.7224348]Key Clinical Projects of Peking University Third Hospital[Y.S.,No.BYSYZD2023047].
文摘Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication.Cell–cell communication(CCC)is essential for growth,development,differentiation,tissue and organ formation,maintenance,and physiological regulation.Cells communicate through direct contact or at a distance using ligand–receptor interactions.So cellular communication encompasses two essential processes:cell signal conduction for generation and intercellular transmission of signals,and cell signal transduction for reception and procession of signals.Deciphering intercellular communication networks is critical for understanding cell differentiation,development,and metabolism.First,we comprehensively review the historical milestones in CCC studies,followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions.Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications.Finally,we summarize various methods for monitoring cell interactions,including cell imaging,proximity-based chemical labeling,mechanical force analysis,downstream analysis strategies,and single-cell technologies.These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes,including tissue homeostasis,cell development,and immune responses in diseases.In addition,this review enhances our understanding of the biological processes that occur after cell–cell binding,highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine.This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
基金supported by the Shenyang Science and Technology Program(grant number 22-301-1-10).
文摘The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.
基金supports from the National Natural Science Foundation of China(Nos.51772135 and 52002148).
文摘Bismuth-based perovskites are considered to be promising candidates to substitute the toxic lead-based perovskite in optoelectronics due to their excellent optoelectronic properties,high environmental friendliness,and(moisture,light,and heat)stability.However,there are still few reports about high performance bismuth-based perovskite ultraviolet photodetectors,and is more lacking in ultraviolet imaging demonstration.Herein,we reported a self-powered NiO_(x)/Cs_(3)Bi_(2)Br_(9) heterojunction photodetector with excellent photodetection performance by electrochemical depositing NiOx as the hole transport layer.The optimized NiO_(x)/CsaBi_(2)Brg heterojunction photodetector exhibits excellent ultraviolet detection performance with a fast response speed of 3.04/4.65 ms,wide linear dynamic range of 116.6 dB,decent responsivity of 4.33 mA·W^(-1) at 0 V bias,and high detectivity of 1.3×10^(11) jones.The outstanding performance of the optimized NiO_(x)/Cs_(3)Bi_(2)Br_(9) heterojunction photodetector is enough to meet the high-quality ultraviolet imaging.Therefore,we further integrated the optimized NiO_(x)/Cs_(3)Bi_(2)Br_(9) heterojunction photodetector to the transmission mode ultraviolet multispectral imaging system,achieving admirable imaging results at weak light condition.This work will play a positive role in promoting the development of bismuth-based ultraviolet photodetection and ultraviolet multispectral imaging.