With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2...With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.展开更多
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au...Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.展开更多
Oxygen catalysis reactions play essential roles in metal-air batteries,fuel cells,water electrolysis and artificial photosynthesis,with their development receiving significant attention in recent years.Understanding t...Oxygen catalysis reactions play essential roles in metal-air batteries,fuel cells,water electrolysis and artificial photosynthesis,with their development receiving significant attention in recent years.Understanding the structure-activity relationship plays an important role in the construction and performance optimization of reversible oxygen catalyst.展开更多
Flexible trimethylamine sensor has been realized based on In2 O3 nanofibers via electrospinning and a deposition technique.The web-like In2O3 nanofibers with high length-to-diameter ratios are benefit for gas adsorpti...Flexible trimethylamine sensor has been realized based on In2 O3 nanofibers via electrospinning and a deposition technique.The web-like In2O3 nanofibers with high length-to-diameter ratios are benefit for gas adsorption and desorption.High trimethylamine sensing properties are observed.The sensors can detect trimethylamine gas down to 1 ppm at 80℃with the response up to 3.8.Additionally,rapid response(6 s)and recovery(10 s)behavior can also be obtained.Good reliability and flexibility are observed in 100 bending/extending cycles.Our results open a new route to construct flexible gas sensors in practice.展开更多
文摘With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.
基金National Natural Science Foundation of China,Grant/Award Numbers:52102260,52171211,51972220,61903235,U22A20145Shandong Provincial Natural Science Foundation,Grant/Award Numbers:ZR2020QB069,ZR2022ME051+4 种基金National Key Research and Development Program of China,Grant/Award Number:2022YFB4002004Scientific and Technological Innovation Ability Improvement Project of Minor Enterprises in Shandong Province,Grant/Award Number:2022TSGC1021Announce the List and Take Charge Project in Jinan,Grant/Award Number:202214012Major innovation project for integrating science,education and industry of Qilu University of Technology (Shandong Academy of Sciences),Grant/Award Numbers:2022JBZ01-07,2022PY044China Postdoctoral Science Foundation,Grant/Award Number:2022M711545。
文摘Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.
基金financially supported by Shandong Provincial Natural Science Foundation(No.ZR2020QB069)the National Natural Science Foundation of China(Nos.52171211,51972220,52102260 and 61903235)+1 种基金the Major Scientific and Technological Innovation Project of Shandong(No.2020CXGC010309)Qilu University of Technology(Shandong Academy of Sciences)Science,Education and Industry Integration Innovation Pilot Project(Nos.2020KJC-ZD07 and 2020KJC-ZD04)
文摘Oxygen catalysis reactions play essential roles in metal-air batteries,fuel cells,water electrolysis and artificial photosynthesis,with their development receiving significant attention in recent years.Understanding the structure-activity relationship plays an important role in the construction and performance optimization of reversible oxygen catalyst.
基金supported by the National Natural Science Foundation of China(Nos.51808328 and 61903235)Natural Science Foundation of Shandong Province(Nos.ZR2017LEM010 and ZR2019BEM036)。
文摘Flexible trimethylamine sensor has been realized based on In2 O3 nanofibers via electrospinning and a deposition technique.The web-like In2O3 nanofibers with high length-to-diameter ratios are benefit for gas adsorption and desorption.High trimethylamine sensing properties are observed.The sensors can detect trimethylamine gas down to 1 ppm at 80℃with the response up to 3.8.Additionally,rapid response(6 s)and recovery(10 s)behavior can also be obtained.Good reliability and flexibility are observed in 100 bending/extending cycles.Our results open a new route to construct flexible gas sensors in practice.