期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Blockchain Security Threats and Collaborative Defense:A Literature Review 被引量:1
1
作者 xiulai li Jieren Cheng +5 位作者 Zhaoxin Shi Jingxin liu Bin Zhang Xinbing Xu Xiangyan Tang Victor S.Sheng 《Computers, Materials & Continua》 SCIE EI 2023年第9期2597-2629,共33页
As a distributed database,the system security of the blockchain is of great significance to prevent tampering,protect privacy,prevent double spending,and improve credibility.Due to the decentralized and trustless natu... As a distributed database,the system security of the blockchain is of great significance to prevent tampering,protect privacy,prevent double spending,and improve credibility.Due to the decentralized and trustless nature of blockchain,the security defense of the blockchain system has become one of the most important measures.This paper comprehensively reviews the research progress of blockchain security threats and collaborative defense,and we first introduce the overview,classification,and threat assessment process of blockchain security threats.Then,we investigate the research status of single-node defense technology and multi-node collaborative defense technology and summarize the blockchain security evaluation indicators and evaluation methods.Finally,we discuss the challenges of blockchain security and future research directions,such as parallel detection and federated learning.This paper aims to stimulate further research and discussion on blockchain security,providing more reliable security guarantees for the use and development of blockchain technology to face changing threats and challenges through continuous updating and improvement of defense technologies. 展开更多
关键词 Blockchain threat assessment collaborative defense security evaluation
下载PDF
MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View
2
作者 Xiangyan Tang Chengchun Ruan +2 位作者 xiulai li Binbin li Cebin Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications. 展开更多
关键词 Small object detection YOLOv7 multi-scale attention spatial context
下载PDF
Ship Detection and Recognition Based on Improved YOLOv7 被引量:4
3
作者 Wei Wu xiulai li +1 位作者 Zhuhua Hu Xiaozhang liu 《Computers, Materials & Continua》 SCIE EI 2023年第7期489-498,共10页
In this paper,an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks,such as the irregular shapes and varying sizes of ships.The improved model replaces the ... In this paper,an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks,such as the irregular shapes and varying sizes of ships.The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset.This paper also introduces a novel multi-scale feature fusion module,which comprises Path Aggregation Network(PAN)modules,enabling the efficient capture of ship features across different scales.Furthermore,data preprocessing is enhanced through the application of data augmentation techniques,including random rotation,scaling,and cropping,which serve to bolster data diversity and robustness.The distribution of positive and negative samples in the dataset is balanced using random sampling,ensuring a more accurate representation of real-world scenarios.Comprehensive experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art approaches in terms of both detection accuracy and robustness,highlighting the potential of the improved YOLOv7 model for practical applications in the maritime domain. 展开更多
关键词 Ship position prediction target detection YOLOv7 data augmentation techniques
下载PDF
A Modified PointNet-Based DDoS Attack Classification and Segmentation in Blockchain 被引量:1
4
作者 Jieren Cheng xiulai li +2 位作者 Xinbing Xu Xiangyan Tang Victor S.Sheng 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期975-992,共18页
With the rapid development of blockchain technology,the number of distributed applications continues to increase,so ensuring the security of the network has become particularly important.However,due to its decentraliz... With the rapid development of blockchain technology,the number of distributed applications continues to increase,so ensuring the security of the network has become particularly important.However,due to its decentralized,decentralized nature,blockchain networks are vulnerable to distributed denial-of-service(DDoS)attacks,which can lead to service stops,causing serious economic losses and social impacts.The research questions in this paper mainly include two aspects:first,the classification of DDoS,which refers to detecting whether blockchain nodes are suffering DDoS attacks,that is,detecting the data of nodes in parallel;The second is the problem of DDoS segmentation,that is,multiple pieces of data that appear at the same time are determined which type of DDoS attack they belong to.In order to solve these problems,this paper proposes a modified PointNet(MPointNet)for the classification and type segmentation of DDoS attacks.A dataset containing multiple DDoS attack types was constructed using the CIC-DDoS2019 dataset,and trained,validated,and tested accordingly.The results show that the proposed DDoS attack classification method has high performance and can be used for the actual blockchain security maintenance process.The accuracy rate of classification tasks reached 99.65%,and the accuracy of type segmentation tasks reached 85.47%.Therefore,the method proposed in this paper has high application value in detecting the classification and segmentation of DDoS attacks. 展开更多
关键词 Blockchain DDOS PointNet classification and segmentation
下载PDF
An Adaptive DDoS Detection and Classification Method in Blockchain Using an Integrated Multi-Models
5
作者 xiulai li Jieren Cheng +3 位作者 Chengchun Ruan Bin Zhang Xiangyan Tang Mengzhe Sun 《Computers, Materials & Continua》 SCIE EI 2023年第12期3265-3288,共24页
With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is cruci... With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is crucial.This research addresses the vulnerability of blockchain systems to DDoS assaults,which undermine their core decentralized characteristics,posing threats to their security and reliability.We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks.To ensure the robustness and validity of our approach,a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset.Using this,our methodology was applied to detect DDoS threats and further classify them into seven unique attack subcategories.To cope with the broad spectrum of DDoS attack variations,a holistic framework has been pro-posed that seamlessly integrates five machine learning models:Gate Recurrent Unit(GRU),Convolutional Neural Networks(CNN),Long-Short Term Memory(LSTM),Deep Neural Networks(DNN),and Support Vector Machine(SVM).The innovative aspect of our framework is the introduction of a dynamic weight adjustment mechanism,enhancing the system’s adaptability.Experimental results substantiate the superiority of our ensemble method in comparison to singular models across various evaluation metrics.The framework displayed remarkable accuracy,with rates reaching 99.71%for detection and 87.62%for classification tasks.By developing a comprehensive and adaptive methodology,this study paves the way for strengthening the defense mechanisms of blockchain systems against DDoS attacks.The ensemble approach,combined with the dynamic weight adjustment,offers promise in ensuring blockchain’s enduring security and trustworthiness. 展开更多
关键词 Blockchain DDOS multi-models adaptive detection
下载PDF
An Explanatory Strategy for Reducing the Risk of Privacy Leaks
6
作者 Mingting liu Xiaozhang liu +3 位作者 Anli Yan xiulai li Gengquan Xie Xin Tang 《Journal of Information Hiding and Privacy Protection》 2021年第4期181-192,共12页
As machine learning moves into high-risk and sensitive applications such as medical care,autonomous driving,and financial planning,how to interpret the predictions of the black-box model becomes the key to whether peo... As machine learning moves into high-risk and sensitive applications such as medical care,autonomous driving,and financial planning,how to interpret the predictions of the black-box model becomes the key to whether people can trust machine learning decisions.Interpretability relies on providing users with additional information or explanations to improve model transparency and help users understand model decisions.However,these information inevitably leads to the dataset or model into the risk of privacy leaks.We propose a strategy to reduce model privacy leakage for instance interpretability techniques.The following is the specific operation process.Firstly,the user inputs data into the model,and the model calculates the prediction confidence of the data provided by the user and gives the prediction results.Meanwhile,the model obtains the prediction confidence of the interpretation data set.Finally,the data with the smallest Euclidean distance between the confidence of the interpretation set and the prediction data as the explainable data.Experimental results show that The Euclidean distance between the confidence of interpretation data and the confidence of prediction data provided by this method is very small,which shows that the model's prediction of interpreted data is very similar to the model's prediction of user data.Finally,we demonstrate the accuracy of the explanatory data.We measure the matching degree between the real label and the predicted label of the interpreted data and the applicability to the network model.The results show that the interpretation method has high accuracy and wide applicability. 展开更多
关键词 Machine learning model data privacy risks machine learning explanatory strategies
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部