期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Modeling time-dependent mechanical behavior of hard rock considering excavation-induced damage and complex 3D stress states 被引量:1
1
作者 Peiyang Yu xiuli ding +3 位作者 Peng-Zhi Pan Shuting Miao Zhaofeng Wang Shuling Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4046-4065,共20页
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon... To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed. 展开更多
关键词 Hard rock Excavation damage Complex stress state Three-dimensional(3D)time-dependent model
下载PDF
Investigation of anisotropic strength criteria for layered rock mass 被引量:1
2
作者 Shuling Huang Jinxin Zhang +4 位作者 xiuli ding Chuanqing Zhang Gang Han Guoqi Yu Lulu Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1289-1304,共16页
Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Moh... Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Mohr-Coulomb and Hoek-Brown criteria are introduced to establish the two transverse isotropic strength criteria based on Jaeger's single weak plane theory and maximum axial strain theory,and parameter determination methods.Furthermore,the sensitivity of strength parameters(K 1,K 2,and K 3)that are used to characterize the anisotropy strength of non-sliding failure involved in the strength criteria and confining pressure are investigated.The results demonstrate that strength parameters K 1 and K 2 affect the strength of layered rock samples at all bedding angles except for the bedding angle of 90°and the angle range that can cause the shear sliding failure along the bedding plane.The strength of samples at any bedding angle decreases with increasing K 1,whereas the opposite is for K 2.Except for bedding angles of 0°and 90°and the bedding angle range that can cause the shear sliding along the bedding plane,K 3 has an impact on the strength of rock samples with other bedding angles that the specimens'strength increases with increase of K 3.In addition,the strength of the rock sample increases as confining pressure rises.Furthermore,the uniaxial and triaxial tests of chlorite schist samples were carried out to verify and evaluate the strength criteria proposed in the paper.It shows that the predicted strength is in good agreement with the experimental results.To test the applicability of the strength criterion,the strength data of several types of rock in the literature are compared.Finally,a comparison is made between the fitting effects of the two strength criteria and other available criteria for layered rocks. 展开更多
关键词 Layered rock Strength anisotropy Strength criterion Experimental verification
下载PDF
Engineering rock mechanics practices in the underground powerhouse at JinpingⅠhydropower station 被引量:5
3
作者 Aiqing Wu Jimin Wang +4 位作者 Zhong Zhou Shuling Huang xiuli ding Zhihong Dong Yuting Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期640-650,共11页
Based on the analyses of data obtained from the underground powerhouse at Jinping I hydropower station, a comprehensive review of engineering rock mechanics practice in the underground powerhouse is first conducted. T... Based on the analyses of data obtained from the underground powerhouse at Jinping I hydropower station, a comprehensive review of engineering rock mechanics practice in the underground powerhouse is first conducted. The distribution of strata, lithology, and initial geo-stress, the excavation process and corresponding rock mass support measures, the deformation and failure characteristics of the surrounding rock mass, the stress characteristics of anchorage structures in the cavern complex, and numerical simulations of surrounding rock mass stability and anchor support performance are presented. The results indicate that the underground powerhouse of Jinping I hydropower station is characterized by high to extremely high geo-stresses during rock excavation. Excessive surrounding rock mass deformation and high stress of anchorage structures, surrounding rock mass unloading damage, and local cracking failure of surrounding rock masses, etc., are mainly caused by rock mass excavation. Deformations of surrounding rock masses and stresses in anchorage structures here are larger than those found elsewhere: 20% of extensometers in the main powerhouse record more than 50 mm with the maximum at around 250 mm observed in the downstream sidewall of the transformer hall. There are about 25% of the anchor bolts having recorded stresses of more than 200 MPa. Jinping I hydropower plant is the first to have an underground powerhouse construction conducted in host rocks under extremely high geo-stress conditions, with the ratio of rock mass strength to geo-stress of less than 2.0. The results can provide a reference to underground powerhouse construction in similar geological conditions. 展开更多
关键词 Underground powerhouse High geo-stress Rock mechanics Rock mass stability Engineering practice
下载PDF
Hardening-Softening Constitutive Model of Hard Brittle Rocks Considering Dilatant Effects and Safety Evaluation Index 被引量:1
4
作者 Shuling Huang Chuanqing Zhang xiuli ding 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第1期121-140,共20页
The damage and even failure of hard brittle rocks has been the most important challenge facing the safety of construction of deep engineering works,so the key to solving this problem is the recognition of the strength... The damage and even failure of hard brittle rocks has been the most important challenge facing the safety of construction of deep engineering works,so the key to solving this problem is the recognition of the strength characteristics and description of the mechanical behavior of hard brittle rocks.Therefore,in view of this problem,in this study,we first analyzed the strength and mechanical response characteristics revealed in tests of,and site excavation in,hard brittle rocks.Second,by analyzing rock-strength envelopes on meridional and deviatoric planes,the generalized polyaxial strain energy(GPSE)strength criterion was applied.This allows description of the effects of the minimum principal stress,intermediate principal stress,hydrostatic pressure,and Lode’s angle of stress on the strength of hard rocks.By establishing evolutionary relationships of strength parameters and dilation parameters with plastic volumetric strain in rock failure,we established an elasto-plastic mechanical constitutive model for hard brittle rocks based on the GPSE criterion.In addition,through use of the failure approach index theory and the dilatancy safety factor,an evaluation index for degree of damage considering dilatant effects of rocks was proposed.Finally,the constitutive model established in this study and the proposed evaluation index were integrated into the numerical simulation method to simulate triaxial tests on rocks and numerical simulation of deformation and fracture of the rocks surrounding the deep-buried auxiliary tunnels in China’s Jinping II Hydropower Station.In this way,the reasonableness of the model and the index was verified.The strength theory and the constitutive model established in this research are applicable to the analysis of high-stress deformation and fracture of hard brittle rock masses,which supports the theoretical work related to deep engineering operations. 展开更多
关键词 Hard brittle rock.Constitutive model Safety evaluation index.Dilatant effect Strength criterion
原文传递
Clinical presentations and outcomes of SARS-CoV-2 infected pneumonia in pregnant women and health status of their neonates
5
作者 Luming Xu Qianqian Yang +17 位作者 Haojun Shi Shijun Lei Xiaoli Liu Ying Zhu Qiulei Wu xiuli ding Yanhong Tian Qinghua Hu Fenghua Chen Zhi Geng Xiangzhi Zeng Lin Lin Xuehong Cai Min Wu Zehua Wang Zheng Wang Geqing Xia Lin Wang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第18期1537-1542,M0003,共7页
The outbreak of COVID-19 has affected the world greatly.While much remains unknown,the severity of the illness is quite alarm-ing.The disease outbreak is still ongoing with a rapidly growing number of patients.
关键词 INFECTED Clinical PNEUMONIA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部