Potassium-selenium(K-Se)batteries have attracted significant attention as one of the most promising alternatives of lithium-ion storage systems owing to high energy density and low cost.In the design of Se-based catho...Potassium-selenium(K-Se)batteries have attracted significant attention as one of the most promising alternatives of lithium-ion storage systems owing to high energy density and low cost.In the design of Se-based cathode materials,however,the low utilization rate of active Se and the rapid dissolution of polyselenides seriously weaken the capacity and cycle stability.Therefore,how to make full use of Se species without loss during the charge and discharge process is the key to design high-performance Se-based cathode.In this paper,a 3 D"water cube"-like Se/C hybrid(denoted as Se-O-PCS)is constructed with the assistance of Na_(2)CO_(3) templates.Thanks to the abundant carbonate groups(CO_(3)^(2-))originated from the Na_(2)CO_(3) templates,the molten Se species are firmly anchored into the pore of carbon skeleton by strong C-O-Se bonding.Thus,this unique Se-O-PCS model not only improves the utilization of active Se species,but also can reduce the contact with the electrolyte to inhibit the shuttle effect of polyselenides.Moreover,flexible carbon skeleton gives Se-O-PCS hybrid a good electrical conductivity and excellent structural robustness.Consequently,the resultant Se-O-PCS hybrid is endowed with an obviously enhanced K-ions storage property.展开更多
Mucosal vaccines offer potential benefits over parenteral vaccines for they can trigger both systemic immune protection and immune responses at the predominant sites of pathogen infection.However,the defense function ...Mucosal vaccines offer potential benefits over parenteral vaccines for they can trigger both systemic immune protection and immune responses at the predominant sites of pathogen infection.However,the defense function of mucosal barrier remains a challenge for vaccines to overcome.Here,we show that surface modification of exosomes with the fragment crystallizable(Fc)part from IgG can deliver the receptor-binding domain(RBD)of SARS-CoV-2 to cross mucosal epithelial layer and permeate into peripheral lung through neonatal Fc receptor(FcRn)mediated transcytosis.The exosomes F-L-R-Exo are generated by genetically engineered dendritic cells,in which a fusion protein Fc-Lamp2b-RBD is expressed and anchored on the membrane.After intratracheally administration,F-L-R-Exo is able to induce a high level of RBD-specific IgG and IgA antibodies in the animals’lungs.Furthermore,potent Th1 immune-biased T cell responses were also observed in both systemic and mucosal immune responses.F-L-R-Exo can protect the mice from SARS-CoV-2 pseudovirus infection after a challenge.These findings hold great promise for the development of a novel respiratory mucosal vaccine approach.展开更多
MoO_(3) is one of the most promising anode materials for aqueous aluminum batteries due to its high theoretical capacity and suitable aluminum insertion/de-insertion potential.However,the inferior cycling stability li...MoO_(3) is one of the most promising anode materials for aqueous aluminum batteries due to its high theoretical capacity and suitable aluminum insertion/de-insertion potential.However,the inferior cycling stability limits its further application,and the failure mechanism is still unclear.In this article,we provide a straightforward potential regulation technique to manage phase evolution during the charge/discharge process,which ultimately results in a markedly enhanced MoO_(3) electrode cycling stability.The failure mechanism study reveals that the excessive oxidation of the electrode during charge/discharge generates the H_(0.34)MoO_(3) phase,which has high solubility and is the primary cause of MoO_(3) deactivation.Although the dissolved Mo species will be deposited onto the electrode sheet again,the deposition is not electrochemically active and cannot contribute to the capacitance.Controlling the cutoff potential prevented the production of H_(0.34)MoO_(3),resulting in excellent cycling performance(80.1% capacity retention after 4000 cycles).The as-assembled α-MoO_(3)//MnO_(2) full battery exhibits high discharge plateaus(1.4 and 0.9 V),large specific capacity(200 mAhg^(-1) at 2 Ag^(-1)),and ultra-high coulombic efficiency(99%).The research presented here may contribute to the development of highly stable electrode materials for aqueous batteries.展开更多
Using the same materials for the cathode and anode in energy storage devices could greatly simplify the technological process and reduce the device cost significantly.In this paper,we assemble a dual carbon-based Li-i...Using the same materials for the cathode and anode in energy storage devices could greatly simplify the technological process and reduce the device cost significantly.In this paper,we assemble a dual carbon-based Li-ion capacitor with the active materials derived entirely from a single precursor,petroleum coke.For the anode,petroleum cokederived carbon(PCC)is prepared by simple ball milling and carbonization,having a massive tap density(1.80 g cm^(-3))and high electrical conductivity(11.5 S cm^(-1)).For the cathode,the raw petroleum coke is activated by KOH(petroleum cokeactivated carbon(PC-AC)sample)to achieve a well-developed pore structure to meet a rapid capacitive behavior.As a result,in addition to the robust structural stability of both the anode and cathode,the assembled dual carbon Li-ion capacitor shows a high energy density(231 W h kg^(-1)/206 W h L^(-1))and ultralong cycling life(up to 3000/10,000 cycles)at a wide voltage window.The excellent electrochemical response and simple production process make the PCC materials have great potential for practical application.展开更多
Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcog...Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcogenide cathodes normally possess only a moderate capacity and a relatively low cycling stability,respectively,which limit the further development of high-performance AIBs.Here,based on the results of first principles calculations,we developed a polyaniline/graphene oxide composite that exhibited outstanding performances as a cathode material in AIBs(delivering 180 mA h g^−1 after 4000 cycles),considering both the discharge capacity and the cycling performance.Ex-situ characterizations verified that the charge storage mechanism of polyaniline depended on the moderate interactions between−NH in the polyaniline chain and the electrolyte anions,such as AlCl4^−.These findings lay the foundation of the development of high-performance AIBs based on conducting polymers.展开更多
基金financially supported by the National Natural Science Foundation of China(51877216)the Natural Science Foundation of Shandong Province(ZR2020MB078)+3 种基金the Taishan Scholar Foundation(tsqn20161017)the Major Program of Shandong Province Natural Science Foundation(ZR201801280009)the Fundamental Research Funds for the Central Universities(18CX05007A,19CX05001A,19CX05002A,20CX06101A)the Postdoctoral Applied Research Program of Qingdao。
文摘Potassium-selenium(K-Se)batteries have attracted significant attention as one of the most promising alternatives of lithium-ion storage systems owing to high energy density and low cost.In the design of Se-based cathode materials,however,the low utilization rate of active Se and the rapid dissolution of polyselenides seriously weaken the capacity and cycle stability.Therefore,how to make full use of Se species without loss during the charge and discharge process is the key to design high-performance Se-based cathode.In this paper,a 3 D"water cube"-like Se/C hybrid(denoted as Se-O-PCS)is constructed with the assistance of Na_(2)CO_(3) templates.Thanks to the abundant carbonate groups(CO_(3)^(2-))originated from the Na_(2)CO_(3) templates,the molten Se species are firmly anchored into the pore of carbon skeleton by strong C-O-Se bonding.Thus,this unique Se-O-PCS model not only improves the utilization of active Se species,but also can reduce the contact with the electrolyte to inhibit the shuttle effect of polyselenides.Moreover,flexible carbon skeleton gives Se-O-PCS hybrid a good electrical conductivity and excellent structural robustness.Consequently,the resultant Se-O-PCS hybrid is endowed with an obviously enhanced K-ions storage property.
基金supported by the National Key R&D Program of China(2023YFC2605000)National Natural Science Foundation of China(32371440,32101157,82104105,81573357)China Postdoctoral Science Foundation(2021M693966).
文摘Mucosal vaccines offer potential benefits over parenteral vaccines for they can trigger both systemic immune protection and immune responses at the predominant sites of pathogen infection.However,the defense function of mucosal barrier remains a challenge for vaccines to overcome.Here,we show that surface modification of exosomes with the fragment crystallizable(Fc)part from IgG can deliver the receptor-binding domain(RBD)of SARS-CoV-2 to cross mucosal epithelial layer and permeate into peripheral lung through neonatal Fc receptor(FcRn)mediated transcytosis.The exosomes F-L-R-Exo are generated by genetically engineered dendritic cells,in which a fusion protein Fc-Lamp2b-RBD is expressed and anchored on the membrane.After intratracheally administration,F-L-R-Exo is able to induce a high level of RBD-specific IgG and IgA antibodies in the animals’lungs.Furthermore,potent Th1 immune-biased T cell responses were also observed in both systemic and mucosal immune responses.F-L-R-Exo can protect the mice from SARS-CoV-2 pseudovirus infection after a challenge.These findings hold great promise for the development of a novel respiratory mucosal vaccine approach.
基金financially supported by the Science and Technology Commission of Shanghai Municipality(20501130200)the National Natural Science Foundation of China(51402342 and 61775201)the National Defense Technology Innovation Special Zone Project.
基金the Youth Program of National Natural Science Foundation of China(grant nos.21905300,52277229,22109180,and 51877216)Taishan Scholar Foundation(grant no.tspd20210308)+5 种基金National Key Research and Development of China(grant no.2022YFA1503400)Key Projects of Shandong Key R&D plan(grant no.2019JZZY010506)Fundamental Research Funds for the Central Universities(grant no.21CX06011A)111 Program of National College Disciplinary Innovation(grant no.B03031)Natural Science Foundation of Shandong Province(grant nos.ZR202103040491 and ZR2020MB078)Research Project of State Key Laboratory for Heavy Oil Processing(grant no.SLKZZKT-2021).
文摘MoO_(3) is one of the most promising anode materials for aqueous aluminum batteries due to its high theoretical capacity and suitable aluminum insertion/de-insertion potential.However,the inferior cycling stability limits its further application,and the failure mechanism is still unclear.In this article,we provide a straightforward potential regulation technique to manage phase evolution during the charge/discharge process,which ultimately results in a markedly enhanced MoO_(3) electrode cycling stability.The failure mechanism study reveals that the excessive oxidation of the electrode during charge/discharge generates the H_(0.34)MoO_(3) phase,which has high solubility and is the primary cause of MoO_(3) deactivation.Although the dissolved Mo species will be deposited onto the electrode sheet again,the deposition is not electrochemically active and cannot contribute to the capacitance.Controlling the cutoff potential prevented the production of H_(0.34)MoO_(3),resulting in excellent cycling performance(80.1% capacity retention after 4000 cycles).The as-assembled α-MoO_(3)//MnO_(2) full battery exhibits high discharge plateaus(1.4 and 0.9 V),large specific capacity(200 mAhg^(-1) at 2 Ag^(-1)),and ultra-high coulombic efficiency(99%).The research presented here may contribute to the development of highly stable electrode materials for aqueous batteries.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2020MB078 and ZR2021QB085)the National Natural Science Foundation of China(51877216 and 22109178)+6 种基金Taishan Scholar Foundation(tsqn20161017)China Postdoctoral Science Foundation(2021M693498)the Postdoctoral Innovative Talent Support Program of Shandong Province(SDBX2021005)the Postdoctoral Innovation Project of Shandong Province(202101009)the Postdoctoral Applied Research Program of Qingdao(qdyy20200071)the Fundamental Research Funds for the Central Universities(19CX05001A,19CX05002A,and 20CX06101A)the Research Project of State Key Laboratory for Heavy Oil Processing(SLK-ZZKT-2021)。
文摘Using the same materials for the cathode and anode in energy storage devices could greatly simplify the technological process and reduce the device cost significantly.In this paper,we assemble a dual carbon-based Li-ion capacitor with the active materials derived entirely from a single precursor,petroleum coke.For the anode,petroleum cokederived carbon(PCC)is prepared by simple ball milling and carbonization,having a massive tap density(1.80 g cm^(-3))and high electrical conductivity(11.5 S cm^(-1)).For the cathode,the raw petroleum coke is activated by KOH(petroleum cokeactivated carbon(PC-AC)sample)to achieve a well-developed pore structure to meet a rapid capacitive behavior.As a result,in addition to the robust structural stability of both the anode and cathode,the assembled dual carbon Li-ion capacitor shows a high energy density(231 W h kg^(-1)/206 W h L^(-1))and ultralong cycling life(up to 3000/10,000 cycles)at a wide voltage window.The excellent electrochemical response and simple production process make the PCC materials have great potential for practical application.
基金financially supported by the National Natural Science Foundation of China (51877216 and 21773309)Taishan Scholar Foundation (tsqn20161017)+1 种基金the Major Program of Shandong Province Natural Science Foundation (ZR201801280009)the Fundamental Research Funds for the Central Universities(18CX05007A,19CX05001A and 19CX05002A)
文摘Aluminum-ion batteries(AIBs)are a type of promising energy storage device due to their high capacity,high charge transfer efficiency,low cost,and high safety.However,the most investigated graphitic and metal dichalcogenide cathodes normally possess only a moderate capacity and a relatively low cycling stability,respectively,which limit the further development of high-performance AIBs.Here,based on the results of first principles calculations,we developed a polyaniline/graphene oxide composite that exhibited outstanding performances as a cathode material in AIBs(delivering 180 mA h g^−1 after 4000 cycles),considering both the discharge capacity and the cycling performance.Ex-situ characterizations verified that the charge storage mechanism of polyaniline depended on the moderate interactions between−NH in the polyaniline chain and the electrolyte anions,such as AlCl4^−.These findings lay the foundation of the development of high-performance AIBs based on conducting polymers.