Hyperhomocysteinemia(HHcy)causes oxidative stress, induces apoptosis, and leads to damage to the vascular endothelium is the starting point of atherosclerosis. Pterostilbene(Pte)has been reported to have antioxidant a...Hyperhomocysteinemia(HHcy)causes oxidative stress, induces apoptosis, and leads to damage to the vascular endothelium is the starting point of atherosclerosis. Pterostilbene(Pte)has been reported to have antioxidant and anti-apoptotic effects under various pathological conditions. The purpose of this study was to explore whether Pte can inhibit the oxidative stress and apoptosis of vascular endothelium induced by homocysteine(Hcy)and to explain the possible mechanism by which it occurs. The results showed that 20 μmol/L Pte significantly reduced the accumulation of reactive oxygen species, malondialdehyde, and lipids in cells induced by Hcy and promoted the activities of superoxide dismutase and catalase. The Hoechst 33342/PI staining assay showed that Pte antagonized Hcy-induced apoptosis. Pte inhibited Hcy-induced Akt dephosphorylation, increased p53, and decreased the Bcl-2/Bax ratio and caspase-9/caspase-3 activation in a dose-dependent manner. LY294002 pretreatment partially reversed the protective effect of Pte by blocking the PI3K/Akt pathway. Moreover, Pte reduced lipid deposition in human umbilical vein endothelial cells(HUVECs). This study proposes that Pte can inhibit Hcy-induced oxidative stress and apoptosis of HUVECs, and the PI3K/Akt/p53 signaling pathway of apoptosis was revealed. These results suggest that Pte exhibits significant potential for dealing with HHcy-induced vascular endothelial injury, such as atherosclerosis.展开更多
Abundant polyphenols make chokeberry have beneficial antioxidant and antiproliferative activity. In order to explore the contribution of different polyphenols in chokeberry to these activities, this study was conducte...Abundant polyphenols make chokeberry have beneficial antioxidant and antiproliferative activity. In order to explore the contribution of different polyphenols in chokeberry to these activities, this study was conducted to determine polyphenol composition from 7 chokeberry varieties produced in China. Totally, 11 kinds of main polyphenol monomers were identified and quantified by UPLC-Q-TOF-MS and UPLC-PDA. HepG2 cells were used to evaluate their cellular antioxidant and antiproliferative activities. Partial least squares method was utilized to analyze multivariate correlations between proportion of different composition and monomers in total polyphenols with these activities. The results showed that the highest proportion in chokeberry polyphenols was proanthocyanidins. In comparing the bioactivities of 7 varieties of chokeberry, ‘Viking' and purple chokeberry had the strongest antioxidant activity, while 'Fukangyuan 1#' had the strongest antiproliferative activity. In terms of the contribution sources of these bioactivities, the total antioxidant activity of chokeberry mainly depended on the contribution of free polyphenols. As the main source of cellular antioxidant activity, anthocyanins and neochlorogenic acid can provide more contribution. The antiproliferative activity mainly depended on the proportion of free polyphenols and proanthocyanidins in total polyphenols. The results may provide some new possibilities for the comprehensive utilization of polyphenols from chokeberry.展开更多
Scope:High-fat diet(HFD)induces imbalance in the small intestine environment,where fat digestion and absorption mainly take place.This study aimed to elucidate the mechanisms by which Lonicera caerulea polyphenols(LCP...Scope:High-fat diet(HFD)induces imbalance in the small intestine environment,where fat digestion and absorption mainly take place.This study aimed to elucidate the mechanisms by which Lonicera caerulea polyphenols(LCP)might inhibit fat absorption,from the perspective of small intestine microbiota and epithelial barrier integrity.Methods and results:Male Sprague-Dawley rats were given HFD with or without co-administration of LCP for 8 weeks.The results showed that LCP supplementation significantly decreased the levels of serum triglycerides(TG),total cholesterol(TC),and low-density lipoprotein cholesterol(LDL-C),and increased the contents of fecal sterols,in HFD rats.LCP also inhibited the dysfunction of the small intestine epithelial barrier,via alleviating the oxidative stress activated by Nrf2-ARE pathway,and by modulating the expressions of pro-inflammatory factors such as tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),cyclooxygenase-2(COX-2),nuclear factor kappa-B p65(NF-κB p65)and inducible nitric oxide synthase(iNOS)in the small intestine.Additionally,LCP administration restored the balance in small intestine microbiota and increased the abundance of the specific bacteria,such as Lactobacillus,involved in fat absorption.Conclusion:Our results demonstrated that LCP may be beneficial to inhibit fat absorption.The mechanism seems to be associated with the protection of the epithelial barrier integrity and the modulation of specific bacteria in the small intestine.展开更多
基金supported by the Zhejiang Lanmei Technology Co.,Ltd.,National Natural Science Foundation of China (U21A20273)“China Agriculture Research System of MOF and MARA (CARS-29)”the First Batch of Liaoning “Unveiling Leader” Scientific and Technological Projects (2021JH1/10400036)。
文摘Hyperhomocysteinemia(HHcy)causes oxidative stress, induces apoptosis, and leads to damage to the vascular endothelium is the starting point of atherosclerosis. Pterostilbene(Pte)has been reported to have antioxidant and anti-apoptotic effects under various pathological conditions. The purpose of this study was to explore whether Pte can inhibit the oxidative stress and apoptosis of vascular endothelium induced by homocysteine(Hcy)and to explain the possible mechanism by which it occurs. The results showed that 20 μmol/L Pte significantly reduced the accumulation of reactive oxygen species, malondialdehyde, and lipids in cells induced by Hcy and promoted the activities of superoxide dismutase and catalase. The Hoechst 33342/PI staining assay showed that Pte antagonized Hcy-induced apoptosis. Pte inhibited Hcy-induced Akt dephosphorylation, increased p53, and decreased the Bcl-2/Bax ratio and caspase-9/caspase-3 activation in a dose-dependent manner. LY294002 pretreatment partially reversed the protective effect of Pte by blocking the PI3K/Akt pathway. Moreover, Pte reduced lipid deposition in human umbilical vein endothelial cells(HUVECs). This study proposes that Pte can inhibit Hcy-induced oxidative stress and apoptosis of HUVECs, and the PI3K/Akt/p53 signaling pathway of apoptosis was revealed. These results suggest that Pte exhibits significant potential for dealing with HHcy-induced vascular endothelial injury, such as atherosclerosis.
基金supported by the National Natural Science Foundation of China (31671863)Young and Middle-aged Technological Innovation Talent Support Program of Shenyang Science and Technology Bureau (RC170247)Innovative Talent Support Program for Institution of Higher Learning of Liaoning Province (LR2017038)。
文摘Abundant polyphenols make chokeberry have beneficial antioxidant and antiproliferative activity. In order to explore the contribution of different polyphenols in chokeberry to these activities, this study was conducted to determine polyphenol composition from 7 chokeberry varieties produced in China. Totally, 11 kinds of main polyphenol monomers were identified and quantified by UPLC-Q-TOF-MS and UPLC-PDA. HepG2 cells were used to evaluate their cellular antioxidant and antiproliferative activities. Partial least squares method was utilized to analyze multivariate correlations between proportion of different composition and monomers in total polyphenols with these activities. The results showed that the highest proportion in chokeberry polyphenols was proanthocyanidins. In comparing the bioactivities of 7 varieties of chokeberry, ‘Viking' and purple chokeberry had the strongest antioxidant activity, while 'Fukangyuan 1#' had the strongest antiproliferative activity. In terms of the contribution sources of these bioactivities, the total antioxidant activity of chokeberry mainly depended on the contribution of free polyphenols. As the main source of cellular antioxidant activity, anthocyanins and neochlorogenic acid can provide more contribution. The antiproliferative activity mainly depended on the proportion of free polyphenols and proanthocyanidins in total polyphenols. The results may provide some new possibilities for the comprehensive utilization of polyphenols from chokeberry.
基金supported by the National Natural Science Foundation of China(32001685)the Guidance Plan of Liaoning Natural Science Foundation(20180550776)the Research Initiation Fund of Shenyang Agricultural University(880418026).
文摘Scope:High-fat diet(HFD)induces imbalance in the small intestine environment,where fat digestion and absorption mainly take place.This study aimed to elucidate the mechanisms by which Lonicera caerulea polyphenols(LCP)might inhibit fat absorption,from the perspective of small intestine microbiota and epithelial barrier integrity.Methods and results:Male Sprague-Dawley rats were given HFD with or without co-administration of LCP for 8 weeks.The results showed that LCP supplementation significantly decreased the levels of serum triglycerides(TG),total cholesterol(TC),and low-density lipoprotein cholesterol(LDL-C),and increased the contents of fecal sterols,in HFD rats.LCP also inhibited the dysfunction of the small intestine epithelial barrier,via alleviating the oxidative stress activated by Nrf2-ARE pathway,and by modulating the expressions of pro-inflammatory factors such as tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),cyclooxygenase-2(COX-2),nuclear factor kappa-B p65(NF-κB p65)and inducible nitric oxide synthase(iNOS)in the small intestine.Additionally,LCP administration restored the balance in small intestine microbiota and increased the abundance of the specific bacteria,such as Lactobacillus,involved in fat absorption.Conclusion:Our results demonstrated that LCP may be beneficial to inhibit fat absorption.The mechanism seems to be associated with the protection of the epithelial barrier integrity and the modulation of specific bacteria in the small intestine.