The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes ...The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes alternate between normal behavior and anomaly behavior,it is difficult to identify and isolate them by the network system in a short time,thus the data transmission accuracy and the integrity of the network function will be affected negatively.Based on the characteristics of IoT,a lightweight local outlier factor detection method is used for node detection.In order to further determine whether the nodes are an anomaly or not,the varying behavior of those nodes in terms of time is considered in this research,and a time series method is used to make the system respond to the randomness and selectiveness of anomaly behavior nodes effectively in a short period of time.Simulation results show that the proposed method can improve the accuracy of the data transmitted by the network and achieve better performance.展开更多
The band alignment at the front interfaces is crucial for the performance of Sb_(2)Se_(3) solar cell with superstrate configuration.Herein,a Sn O_(2)/Ti O_(2) thin film,demonstrated beneficial for carrier transport in...The band alignment at the front interfaces is crucial for the performance of Sb_(2)Se_(3) solar cell with superstrate configuration.Herein,a Sn O_(2)/Ti O_(2) thin film,demonstrated beneficial for carrier transport in Sb_(2)Se_(3) device by the first-principle calculation and experiment,is proposed to reduce the parasitic absorption caused by CdS and optimize the band alignment of Sb_(2)Se_(3) solar cell.Thanks to the desirable transmittance of SnO_(2)/TiO_(2) layer,the Sb_(2)Se_(3) solar cell with SnO_(2)/TiO_(2)/(CdS-38 nm) electron transport layer performances better than (CdS-70 nm)/Sb_(2)Se_(3) solar cell.The optimized band alignment,the reduced interface defects and the decreased current leakage of Sb_(2)Se_(3) solar cell enable the short-circuit current density,fill factor,open-circuit voltage and efficiency of the Sb_(2)Se_(3) solar cell increase by 26.7%,112%,33.1%and 250%respectively when comparing with TiO_(2)/Sb_(2)Se_(3) solar cell without modification.Finally,an easily prepared Sn O_(2)/Ti O_(2)/CdS ETL is successfully applied on Sb_(2)Se_(3) solar cell by the first time and contributes to the best efficiency of 7.0%in this work,which is remarkable for Sb_(2)Se_(3) solar cells free of hole transporting materials and toxic CdCl_(2) treatment.This work is expected to provide a valuable reference for future ETL design and band alignment for Sb_(2)Se_(3) solar cell and other optoelectronic devices.展开更多
Understanding hydrogen diffusion in amorphous SiO2(a-SiO2),especially under strain,is of prominent importance for improving the reliability of semiconducting devices,such as metal-oxide-semiconductor field effect tran...Understanding hydrogen diffusion in amorphous SiO2(a-SiO2),especially under strain,is of prominent importance for improving the reliability of semiconducting devices,such as metal-oxide-semiconductor field effect transistors.In this work,the diffusion of hydrogen atom in a-SiO2 under strain is simulated by using molecular dynamics(MD)with the ReaxFF force field.A defect-free a-SiO2 atomic model,of which the local structure parameters accord well with the experimental results,is established.Strain is applied by using the uniaxial tensile method,and the values of maximum strain,ultimate strength,and Young's modulus of the a-SiO2 model under different tensile rates are calculated.The diffusion of hydrogen atom is simulated by MD with the ReaxFF,and its pathway is identified to be a series of hops among local energy minima.Moreover,the calculated diffusivity and activation energy show their dependence on strain.The diffusivity is substantially enhanced by the tensile strain at a low temperature(below 500 K),but reduced at a high temperature(above 500 K).The activation energy decreases as strain increases.Our research shows that the tensile strain can have an influence on hydrogen transportation in a-SiO2,which may be utilized to improve the reliability of semiconducting devices.展开更多
The effects of uniaxial tensile strain on the structural and electronic properties of positively charged oxygen vacancy defects in amorphous silica(a-SiO2)are systematically investigated using ab-initio calculation ba...The effects of uniaxial tensile strain on the structural and electronic properties of positively charged oxygen vacancy defects in amorphous silica(a-SiO2)are systematically investigated using ab-initio calculation based on density functional theory.Four types of positively charged oxygen vacancy defects,namely the dimer,unpuckered,and puckered four-fold(4×),and puckered five-fold(5×)configurations have been investigated.It is shown by the calculations that applying uniaxial tensile strain can lead to irreversible transitions of defect structures,which can be identified from the fluctuations of the curves of relative total energy versus strain.Driven by strain,a positively charged dimer configuration may relax into a puckered 5×configuration,and an unpuckered configuration may relax into either a puckered 4×configuration or a forward-oriented configuration.Accordingly,the Fermi contacts of the defects remarkably increase and the defect levels shift under strain.The Fermi contacts of the puckered configurations also increase under strain to the values close to that of Eα′center in a-SiO2.In addition,it is shown by the calculations that the relaxation channels of the puckered configurations after electron recombination are sensitive to strain,that is,those configurations are more likely to relax into a two-fold coordinated Si structure or to hold a puckered structure under strain,both of which may raise up the thermodynamic charge-state transition levels of the defects into Si band gap.As strain induces more puckered configurations with the transition levels in Si band gap,it may facilitate directly the development of oxide charge accumulation and indirectly that of interface charge accumulation by promoting proton generation under ionization radiation.This work sheds a light on understanding the strain effect on ionization damage at an atomic scale.展开更多
Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-p...Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-principles calculations have been applied to explore the defects and their reactions associated with the proton release in a-quartz, the well-known crystalline isomer of amorphous silica. When a high concentration of molecular hydrogen (H2) is present, the proton generation can be enhanced by cracking the He molecules at the positively charged oxygen vacancies in dimer configuration. If the concentration of molecular hydrogen is low, the proton generation mainly depends on the proton dissociation of the doubly- hydrogenated defects. In particular, a fully passivated E~ center can dissociate to release a proton barrierlessly by structure relaxation once trapping a hole. This research provides a microscopic insight into the proton release in silicon dioxide, the critical step associated with the interface-trap formation under radiation in microelectronic devices.展开更多
It is well known that in the process of thermal oxidation of silicon,there are P_(b)-type defects at amorphous silicon dioxide/silicon(a-SiO_(2)/Si)interface due to strain.These defects have a very important impact on...It is well known that in the process of thermal oxidation of silicon,there are P_(b)-type defects at amorphous silicon dioxide/silicon(a-SiO_(2)/Si)interface due to strain.These defects have a very important impact on the performance and reliability of semiconductor devices.In the process of passivation,hydrogen is usually used to inactivate P_(b)-type defects by the reaction P_(b)+H_(2)→P_(b)H+H.At the same time,P_(b)H centers dissociate according to the chemical reaction P_(b)H→P_(b)+H.Therefore,it is of great significance to study the balance of the passivation and dissociation.In this work,the reaction mechanisms of passivation and dissociation of the P_(b)-type defects are investigated by first-principles calculations.The reaction rates of the passivation and dissociation are calculated by the climbing image-nudged elastic band(CI-NEB)method and harmonic transition state theory(HTST).By coupling the rate equations of the passivation and dissociation reactions,the equilibrium density ratio of the saturated interfacial dangling bonds and interfacial defects(P_(b),P_(b)0,and P_(b)1)at different temperatures is calculated.展开更多
The holes induced by ionizing radiation or carrier injection can depassivate saturated interface defects.The depassivation of these defects suggests that the deep levels associated with the defects are reactivated,aff...The holes induced by ionizing radiation or carrier injection can depassivate saturated interface defects.The depassivation of these defects suggests that the deep levels associated with the defects are reactivated,affecting the performance of devices.This work simulates the depassivation reactions between holes and passivated amorphous-SiO_(2)/Si interface defects(HP_(b)+h→P_(b)+H^(+)).The climbing image nudged elastic band method is used to calculate the reaction curves and the barriers.In addition,the atomic charges of the initial and final structures are analyzed by the Bader charge method.It is shown that more than one hole is trapped by the defects,which is implied by the reduction in the total number of valence electrons on the active atoms.The results indicate that the depassivation of the defects by the holes actually occurs in three steps.In the first step,a hole is captured by the passivated defect,resulting in the stretching of the Si-H bond.In the second step,the defect captures one more hole,which may contribute to the breaking of the Si-H bond.The H atom is released as a proton and the Si atom is three-coordinated and positively charged.In the third step,an electron is captured by the Si atom,and the Si atom becomes neutral.In this step,a Pb-type defect is reactivated.展开更多
The first-principles calculations based on density functional theory are performed to study F-,Cl-,and N-related defects of amorphous SiO_(2)(a-SiO_(2)) and their impacts on carrier trapping and proton release.The pos...The first-principles calculations based on density functional theory are performed to study F-,Cl-,and N-related defects of amorphous SiO_(2)(a-SiO_(2)) and their impacts on carrier trapping and proton release.The possible geometric configurations of the impurity-related defects,the formation energies,the hole or electron trapping of the neutral defects,and the mechanisms to suppress proton diffusion by doping N are investigated.It is demonstrated by the calculations that the impurity atoms can interact with the oxygen vacancies and result in impurity-related defects.The reactions can be utilized to saturate oxygen vacancies that will cause ionization damage to the semiconducting devices.Moreover,the calculated formation energy indicates that the F-or Cl-related oxygen vacancy defect is a deep hole trap,which can trap holes and prevent them from diffusing to the a-SiO_(2)/Si interface.However,three N-related defects,namely N(2)o-H,N(2)o=O,and N(3)o-Vo,tend to act as shallow hole traps to facilitate hole transportation during device operation.The N(2)o and N(3)o configurations can be negatively charged as deep electron traps during the oxide charge buildup after ionization radiation.In addition,the nudged elastic band(NEB) calculations show that four N-related defects,namely N(2)o,N(2)o-H,N(2)o=O,and N(3)o are capable of capturing protons and preventing them from diffusing to and de-passivating the interface.This research reveals the fundamental properties of the F-,Cl-,and N-related defects in amorphous silica and the details of the reactions of the carrier trapping and proton release.The findings help to understand the microscopic mechanisms that alleviate ionization damage of semiconducting devices by doping a-SiO_(2).展开更多
Using the first-principles calculations, we study the structural, electronic, and magnetic properties of vanadium adsorbed MoSe_2 monolayer, and the magnetic couplings between the V adatoms at different adsorption con...Using the first-principles calculations, we study the structural, electronic, and magnetic properties of vanadium adsorbed MoSe_2 monolayer, and the magnetic couplings between the V adatoms at different adsorption concentrations. The calculations show that the V atom is chemically adsorbed on the MoSe_2 monolayer and prefers the location on the top of an Mo atom surrounded by three nearest-neighbor Se atoms. The interatomic electron transfer from the V to the nearestneighbor Se results in the polarized covalent bond with weak covalency, associated with the hybridizations of V with Se and Mo. The V adatom induces local impurity states in the middle of the band gap of pristine MoSe_2, and the peak of density of states right below the Fermi energy is associated with the V- dz^2 orbital. A single V adatom induces a magnetic moment of 5 μBthat mainly distributes on the V-3d and Mo-4d orbitals. The V adatom is in high-spin state, and its local magnetic moment is associated with the mid-gap impurity states that are mainly from the V-3d orbitals. In addition,the crystal field squashes a part of the V-4s electrons into the V-3d orbitals, which enhances the local magnetic moment.The magnetic ground states at different adsorption concentrations are calculated by generalized gradient approximations(GGA) and GGA+U with enhanced electron localization. In addition, the exchange integrals between the nearest-neighbor V adatoms at different adsorption concentrations are calculated by fitting the first-principle total energies of ferromagnetic(FM) and antiferromagnetic(AFM) states to the Heisenberg model. The calculations with GGA show that there is a transition from ferromagnetic to antiferromagnetic ground state with increasing the distance between the V adatoms. We propose an exchange mechanism based on the on-site exchange on Mo and the hybridization between Mo and V, to explain the strong ferromagnetic coupling at a short distance between the V adatoms. However, the ferromagnetic exchange mechanism is sensitive to both the increased inter-adatom distance at low concentration and the enhanced electron localization by GGA+U, which leads to antiferromagnetic ground state, where the antiferromagnetic superexchange is dominant.展开更多
On the basis of first-principles calculations,we investigate the electronic and magnetic properties of 1T phase chromium sulfide halide CrXY(X=O,S,Se;Y=Cl,Br,I)monolayers in CrCl_(2) structure with the P3m1 space grou...On the basis of first-principles calculations,we investigate the electronic and magnetic properties of 1T phase chromium sulfide halide CrXY(X=O,S,Se;Y=Cl,Br,I)monolayers in CrCl_(2) structure with the P3m1 space group.Except for the CrOI monolayer,all CrXY monolayers are stable and ferromagnetic semiconductors.Our results show that the ferromagnetic coupling is dominated by the kinetic exchange between the empty e_(g)-orbital of Cr atoms and the p-orbital of anions under the three-fold rotational symmetry.In this context,the coupling strength allows for being greatly enhanced by turning the nature of Cr–X bonds,i.e.,increasing the covalent contribution of the bonds by minimizing the energy difference of the coupled orbitals.As we illustrate for the example of CrOY,the Curie temperature(T_(c))is nearly tripled by substituting O by S/Se ion,eventually reaching the highest Tc in CrSeI monolayer(334 K).The high stabilities and Curie temperature manifest these monolayer ferromagnetic materials feasible for synthesis and applicable to 2D spintronic devices.展开更多
基金This work is partially supported by the Ministry of Education of China(www.moe.gov.cn)under grant Nos.201802123091(received by F.W.)and 201802123068(received by Z.W.)Scientific Project of CAFUC(www.cafuc.edu.cn)under grant Nos.F2017KF02 and J2018-3(both received by Z.W.)Teaching Reform Project of CAFUC(www.cafuc.edu.cn)under grant No.E2020044(received by Z.W.).
文摘The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes alternate between normal behavior and anomaly behavior,it is difficult to identify and isolate them by the network system in a short time,thus the data transmission accuracy and the integrity of the network function will be affected negatively.Based on the characteristics of IoT,a lightweight local outlier factor detection method is used for node detection.In order to further determine whether the nodes are an anomaly or not,the varying behavior of those nodes in terms of time is considered in this research,and a time series method is used to make the system respond to the randomness and selectiveness of anomaly behavior nodes effectively in a short period of time.Simulation results show that the proposed method can improve the accuracy of the data transmitted by the network and achieve better performance.
基金supported by the National Key R&D Program of China(2019YFB1503500)the National Natural Science Foundation of China(U1902218,11774187)the Postgraduate Education Innovation Project of Tianjin,China(2021YJSB002)。
文摘The band alignment at the front interfaces is crucial for the performance of Sb_(2)Se_(3) solar cell with superstrate configuration.Herein,a Sn O_(2)/Ti O_(2) thin film,demonstrated beneficial for carrier transport in Sb_(2)Se_(3) device by the first-principle calculation and experiment,is proposed to reduce the parasitic absorption caused by CdS and optimize the band alignment of Sb_(2)Se_(3) solar cell.Thanks to the desirable transmittance of SnO_(2)/TiO_(2) layer,the Sb_(2)Se_(3) solar cell with SnO_(2)/TiO_(2)/(CdS-38 nm) electron transport layer performances better than (CdS-70 nm)/Sb_(2)Se_(3) solar cell.The optimized band alignment,the reduced interface defects and the decreased current leakage of Sb_(2)Se_(3) solar cell enable the short-circuit current density,fill factor,open-circuit voltage and efficiency of the Sb_(2)Se_(3) solar cell increase by 26.7%,112%,33.1%and 250%respectively when comparing with TiO_(2)/Sb_(2)Se_(3) solar cell without modification.Finally,an easily prepared Sn O_(2)/Ti O_(2)/CdS ETL is successfully applied on Sb_(2)Se_(3) solar cell by the first time and contributes to the best efficiency of 7.0%in this work,which is remarkable for Sb_(2)Se_(3) solar cells free of hole transporting materials and toxic CdCl_(2) treatment.This work is expected to provide a valuable reference for future ETL design and band alignment for Sb_(2)Se_(3) solar cell and other optoelectronic devices.
基金Project supported by the Science Challenge Project,China(Grant No.TZ2016003-1-105)the CAEP Microsystem and THz Science and Technology Foundation,China(Grant No.CAEPMT201501).
文摘Understanding hydrogen diffusion in amorphous SiO2(a-SiO2),especially under strain,is of prominent importance for improving the reliability of semiconducting devices,such as metal-oxide-semiconductor field effect transistors.In this work,the diffusion of hydrogen atom in a-SiO2 under strain is simulated by using molecular dynamics(MD)with the ReaxFF force field.A defect-free a-SiO2 atomic model,of which the local structure parameters accord well with the experimental results,is established.Strain is applied by using the uniaxial tensile method,and the values of maximum strain,ultimate strength,and Young's modulus of the a-SiO2 model under different tensile rates are calculated.The diffusion of hydrogen atom is simulated by MD with the ReaxFF,and its pathway is identified to be a series of hops among local energy minima.Moreover,the calculated diffusivity and activation energy show their dependence on strain.The diffusivity is substantially enhanced by the tensile strain at a low temperature(below 500 K),but reduced at a high temperature(above 500 K).The activation energy decreases as strain increases.Our research shows that the tensile strain can have an influence on hydrogen transportation in a-SiO2,which may be utilized to improve the reliability of semiconducting devices.
基金Project supported by the Science Challenge Project,China(Grant No.TZ2016003-1-105)the CAEP Microsystem and THz Science and Technology Foundation(Grant No.CAT201501)。
文摘The effects of uniaxial tensile strain on the structural and electronic properties of positively charged oxygen vacancy defects in amorphous silica(a-SiO2)are systematically investigated using ab-initio calculation based on density functional theory.Four types of positively charged oxygen vacancy defects,namely the dimer,unpuckered,and puckered four-fold(4×),and puckered five-fold(5×)configurations have been investigated.It is shown by the calculations that applying uniaxial tensile strain can lead to irreversible transitions of defect structures,which can be identified from the fluctuations of the curves of relative total energy versus strain.Driven by strain,a positively charged dimer configuration may relax into a puckered 5×configuration,and an unpuckered configuration may relax into either a puckered 4×configuration or a forward-oriented configuration.Accordingly,the Fermi contacts of the defects remarkably increase and the defect levels shift under strain.The Fermi contacts of the puckered configurations also increase under strain to the values close to that of Eα′center in a-SiO2.In addition,it is shown by the calculations that the relaxation channels of the puckered configurations after electron recombination are sensitive to strain,that is,those configurations are more likely to relax into a two-fold coordinated Si structure or to hold a puckered structure under strain,both of which may raise up the thermodynamic charge-state transition levels of the defects into Si band gap.As strain induces more puckered configurations with the transition levels in Si band gap,it may facilitate directly the development of oxide charge accumulation and indirectly that of interface charge accumulation by promoting proton generation under ionization radiation.This work sheds a light on understanding the strain effect on ionization damage at an atomic scale.
基金Project supported by the Science Challenge Project,China(Grant No.TZ2016003-1-105)CAEP Microsystem and THz Science and Technology Foundation,China(Grant No.CAEPMT201501)+1 种基金the National Natural Science Foundation China(Grant No.NSFC 11404300)the National Basic Research Program of China(Grant No.2011CB606405)
文摘Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-principles calculations have been applied to explore the defects and their reactions associated with the proton release in a-quartz, the well-known crystalline isomer of amorphous silica. When a high concentration of molecular hydrogen (H2) is present, the proton generation can be enhanced by cracking the He molecules at the positively charged oxygen vacancies in dimer configuration. If the concentration of molecular hydrogen is low, the proton generation mainly depends on the proton dissociation of the doubly- hydrogenated defects. In particular, a fully passivated E~ center can dissociate to release a proton barrierlessly by structure relaxation once trapping a hole. This research provides a microscopic insight into the proton release in silicon dioxide, the critical step associated with the interface-trap formation under radiation in microelectronic devices.
基金Project supported by the Science Challenge Project,China(Grant No.TZ2016003-1-105)the Tianjin Natural Science Foundation,China(Grant No.20JCZDJC00750)the Fundamental Research Funds for the Central Universities,Nankai University(Grant Nos.63211107 and 63201182).
文摘It is well known that in the process of thermal oxidation of silicon,there are P_(b)-type defects at amorphous silicon dioxide/silicon(a-SiO_(2)/Si)interface due to strain.These defects have a very important impact on the performance and reliability of semiconductor devices.In the process of passivation,hydrogen is usually used to inactivate P_(b)-type defects by the reaction P_(b)+H_(2)→P_(b)H+H.At the same time,P_(b)H centers dissociate according to the chemical reaction P_(b)H→P_(b)+H.Therefore,it is of great significance to study the balance of the passivation and dissociation.In this work,the reaction mechanisms of passivation and dissociation of the P_(b)-type defects are investigated by first-principles calculations.The reaction rates of the passivation and dissociation are calculated by the climbing image-nudged elastic band(CI-NEB)method and harmonic transition state theory(HTST).By coupling the rate equations of the passivation and dissociation reactions,the equilibrium density ratio of the saturated interfacial dangling bonds and interfacial defects(P_(b),P_(b)0,and P_(b)1)at different temperatures is calculated.
基金Project supported by the Science Challenge Project(Grant No.TZ2016003-1-105)Tianjin Natural Science Foundation,China(Grant No.20JCZDJC00750)the Fundamental Research Funds for the Central Universities—Nankai University(Grant Nos.63211107 and 63201182)。
文摘The holes induced by ionizing radiation or carrier injection can depassivate saturated interface defects.The depassivation of these defects suggests that the deep levels associated with the defects are reactivated,affecting the performance of devices.This work simulates the depassivation reactions between holes and passivated amorphous-SiO_(2)/Si interface defects(HP_(b)+h→P_(b)+H^(+)).The climbing image nudged elastic band method is used to calculate the reaction curves and the barriers.In addition,the atomic charges of the initial and final structures are analyzed by the Bader charge method.It is shown that more than one hole is trapped by the defects,which is implied by the reduction in the total number of valence electrons on the active atoms.The results indicate that the depassivation of the defects by the holes actually occurs in three steps.In the first step,a hole is captured by the passivated defect,resulting in the stretching of the Si-H bond.In the second step,the defect captures one more hole,which may contribute to the breaking of the Si-H bond.The H atom is released as a proton and the Si atom is three-coordinated and positively charged.In the third step,an electron is captured by the Si atom,and the Si atom becomes neutral.In this step,a Pb-type defect is reactivated.
基金Project supported by the Science Challenge Project(Grant No.TZ2016003-1-105)CAEP Microsystem and THz Science and Technology Foundation(Grant No.CAEPMT201501)+1 种基金the National Basic Research Program of China(Grant No.2011CB606405)Tianjin Natural Science Foundation,China(Grant No.20JCZDJC00750)。
文摘The first-principles calculations based on density functional theory are performed to study F-,Cl-,and N-related defects of amorphous SiO_(2)(a-SiO_(2)) and their impacts on carrier trapping and proton release.The possible geometric configurations of the impurity-related defects,the formation energies,the hole or electron trapping of the neutral defects,and the mechanisms to suppress proton diffusion by doping N are investigated.It is demonstrated by the calculations that the impurity atoms can interact with the oxygen vacancies and result in impurity-related defects.The reactions can be utilized to saturate oxygen vacancies that will cause ionization damage to the semiconducting devices.Moreover,the calculated formation energy indicates that the F-or Cl-related oxygen vacancy defect is a deep hole trap,which can trap holes and prevent them from diffusing to the a-SiO_(2)/Si interface.However,three N-related defects,namely N(2)o-H,N(2)o=O,and N(3)o-Vo,tend to act as shallow hole traps to facilitate hole transportation during device operation.The N(2)o and N(3)o configurations can be negatively charged as deep electron traps during the oxide charge buildup after ionization radiation.In addition,the nudged elastic band(NEB) calculations show that four N-related defects,namely N(2)o,N(2)o-H,N(2)o=O,and N(3)o are capable of capturing protons and preventing them from diffusing to and de-passivating the interface.This research reveals the fundamental properties of the F-,Cl-,and N-related defects in amorphous silica and the details of the reactions of the carrier trapping and proton release.The findings help to understand the microscopic mechanisms that alleviate ionization damage of semiconducting devices by doping a-SiO_(2).
基金Project supported by the National Basic Research Program of China(Grant No.2011CB606405)the CAEP Microsystem and THz Science and Technology Foundation,China(Grant No.CAEPMT201501)the Science Challenge Project,China(Grant No.JCKY2016212A503)
文摘Using the first-principles calculations, we study the structural, electronic, and magnetic properties of vanadium adsorbed MoSe_2 monolayer, and the magnetic couplings between the V adatoms at different adsorption concentrations. The calculations show that the V atom is chemically adsorbed on the MoSe_2 monolayer and prefers the location on the top of an Mo atom surrounded by three nearest-neighbor Se atoms. The interatomic electron transfer from the V to the nearestneighbor Se results in the polarized covalent bond with weak covalency, associated with the hybridizations of V with Se and Mo. The V adatom induces local impurity states in the middle of the band gap of pristine MoSe_2, and the peak of density of states right below the Fermi energy is associated with the V- dz^2 orbital. A single V adatom induces a magnetic moment of 5 μBthat mainly distributes on the V-3d and Mo-4d orbitals. The V adatom is in high-spin state, and its local magnetic moment is associated with the mid-gap impurity states that are mainly from the V-3d orbitals. In addition,the crystal field squashes a part of the V-4s electrons into the V-3d orbitals, which enhances the local magnetic moment.The magnetic ground states at different adsorption concentrations are calculated by generalized gradient approximations(GGA) and GGA+U with enhanced electron localization. In addition, the exchange integrals between the nearest-neighbor V adatoms at different adsorption concentrations are calculated by fitting the first-principle total energies of ferromagnetic(FM) and antiferromagnetic(AFM) states to the Heisenberg model. The calculations with GGA show that there is a transition from ferromagnetic to antiferromagnetic ground state with increasing the distance between the V adatoms. We propose an exchange mechanism based on the on-site exchange on Mo and the hybridization between Mo and V, to explain the strong ferromagnetic coupling at a short distance between the V adatoms. However, the ferromagnetic exchange mechanism is sensitive to both the increased inter-adatom distance at low concentration and the enhanced electron localization by GGA+U, which leads to antiferromagnetic ground state, where the antiferromagnetic superexchange is dominant.
基金The research is supported by the Science Challenge Project(Grant No.TZ2016003-1-105)the Tianjin Natural Science Fundation(Grant No.20JCZDJC00750)the Fundamental Research Funds for the Central Universities,Nankai University(Grant Nos.63211107 and 63201182)。
文摘On the basis of first-principles calculations,we investigate the electronic and magnetic properties of 1T phase chromium sulfide halide CrXY(X=O,S,Se;Y=Cl,Br,I)monolayers in CrCl_(2) structure with the P3m1 space group.Except for the CrOI monolayer,all CrXY monolayers are stable and ferromagnetic semiconductors.Our results show that the ferromagnetic coupling is dominated by the kinetic exchange between the empty e_(g)-orbital of Cr atoms and the p-orbital of anions under the three-fold rotational symmetry.In this context,the coupling strength allows for being greatly enhanced by turning the nature of Cr–X bonds,i.e.,increasing the covalent contribution of the bonds by minimizing the energy difference of the coupled orbitals.As we illustrate for the example of CrOY,the Curie temperature(T_(c))is nearly tripled by substituting O by S/Se ion,eventually reaching the highest Tc in CrSeI monolayer(334 K).The high stabilities and Curie temperature manifest these monolayer ferromagnetic materials feasible for synthesis and applicable to 2D spintronic devices.