期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical simulation on gas–liquid multiphase flow behavior under coupling effects of annular gas curtain and swirling flow at tundish upper nozzle
1
作者 xu-feng qin Chang-gui Cheng +4 位作者 Yang Li Wei-li Wu Hao Chen Chao-fa Zhao Yan Jin 《Journal of Iron and Steel Research International》 SCIE EI CAS 2024年第11期2693-2709,共17页
A three-dimensional mathematical model has been established for a novel metallurgy process coupling an annular gas curtain with swirling flow at tundish upper nozzle. The discrete phase model and volume of fluid model... A three-dimensional mathematical model has been established for a novel metallurgy process coupling an annular gas curtain with swirling flow at tundish upper nozzle. The discrete phase model and volume of fluid model were applied to simulate the gas–liquid multiphase flow behavior in tundish and nozzle. The effect of argon flow rate on the migration behavior of bubbles and interface behavior between steel and slag was also investigated. The presented results indicate that the novel coupling process can significantly change the flow pattern in the stream zone of a tundish, prolong the average residence time of liquid steel, and reduce the dead fraction. A complete annular gas curtain is formed around the stopper rod of tundish. Under the action of drag force of liquid steel, a part of small bubbles enter the nozzle through the swirling grooves and gather toward the center of the nozzle by centripetal force. As the argon flow rate increases, the volume fraction of argon gas entering the nozzle increases, which enhances the swirl intensity and increases the concentration of bubbles in the nozzle. To avoid the formation of slag open eye in tundish, the argon flow rate should not exceed 8 L min−1. 展开更多
关键词 Annular gas curtain Swirling flow Tundish upper nozzle Multiphase flow Numerical simulation
原文传递
Flow and heat transfer of liquid slag in a continuous casting mold 被引量:6
2
作者 Hai-biao Lu Chang-gui Cheng +2 位作者 Yang Li xu-feng qin Yan Jin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第9期926-940,共15页
A three-dimensional mathematical model for coupled liquid steel and liquid slag was established to study the flow and heat transfer behavior of liquid slag. Based on the volume of fluid method and the heat transfer mo... A three-dimensional mathematical model for coupled liquid steel and liquid slag was established to study the flow and heat transfer behavior of liquid slag. Based on the volume of fluid method and the heat transfer model, the effect of different casting parameters on the flow and heat transfer of the liquid slag was investigated. The results show that there are two different size recirculation zones of the liquid slag layer on the liquid steel in the mold center plane, extending from the submerged entry nozzle to the mold narrow face. With the increase in the casting speed and the decrease in the viscosity of the mold flux, the overall velocity and the temperature of the liquid slag increase. With the increase in the inclination angle and the submergence depth of the submerged entry nozzle, the temperature of the liquid slag decreases, and the velocity decreases near the mold narrow face and increases in the vicinity of the submerged entry nozzle. The inactive flow field and the low temperature of liquid slag within 100 mm of the submerged entry nozzle may intensify the surface longitudinal cracking sensitivity of the slab. When the lubrication and heat transfer are well regulated between the surface of mold and the mold flux film, low casting speed, large inclination angle and submergence depth of the submerged entry nozzle are beneficial for reducing the possibility of a slab surface longitudinal crack. 展开更多
关键词 Continuous CASTING Liquid SLAG Flow HEAT TRANSFER Surface longitudinal CRACKING sensitivity MATHEMATICAL simulation
原文传递
Effects of argon blowing at tundish upper nozzle on multiphase flow behavior in nozzle 被引量:4
3
作者 xu-feng qin Chang-gui Cheng +2 位作者 Yang Li Wei-li Wu Yan Jin 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第4期588-600,共13页
In continuous casting,the argon blowing at the tundish upper nozzle is usually used to prevent nozzle clogging,whose effect is closely related to the migration of argon bubbles and the flow behavior of the liquid stee... In continuous casting,the argon blowing at the tundish upper nozzle is usually used to prevent nozzle clogging,whose effect is closely related to the migration of argon bubbles and the flow behavior of the liquid steel in the nozzle.Here,to investigate the effects of argon blowing at the tundish upper nozzle on multiphase flow behavior in nozzle,a threedimensional model of the tundish–nozzle–mold was established for numerical simulation.The results indicate that the argon bubbles injected from the inner wall of the tundish upper nozzle first move downward along the nozzle wall under the action of the liquid steel.As the distance from the tundish upper nozzle increases,the argon bubbles gradually diffuse to the center of the nozzle.Compared with no argon blowing,the liquid steel velocity increases in the center of the nozzle and decreases near the wall with argon blowing.With increasing the argon flow rate,the concentration of bubbles in the nozzle increases,and the process of bubble group diffusion to the center region of the nozzle speeds up.This in turn increases the liquid steel velocity at the center of the nozzle but reduces near the wall.With increasing the casting speed,the concentration of bubbles in the nozzle decreases,the length of the bubble group near the nozzle wall is extended,and the liquid steel velocity at the center region and near-wall region of the nozzle increases.The mechanism of argon blowing at the tundish upper nozzle to prevent nozzle clogging is mainly realized by the isolation effect of the argon bubble group on the inner wall of the nozzle. 展开更多
关键词 ARGON BLOWING TUNDISH UPPER NOZZLE NOZZLE CLOGGING Numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部