The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and soci...The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting th...The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.展开更多
Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation...Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation and a locally active memristor serves as a synapse,are formulated to investigate the impact of a memristor on a two-dimensional Hindmarsh-Rose neuron model.Numerical simulations show that the neuronal models in different scenarios have multiple burst firing patterns.The introduction of the memristor makes the neuronal model exhibit complex dynamical behaviors.Finally,the simulation circuit and DSP hardware implementation results validate the physical mechanism,as well as the reliability of the biological neuron model.展开更多
Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connect...Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connectionmechanism, whereas an efficient data-sharing protocol constitutes as the bedrock of Blockchain network security.In this paper, we propose NodeHunter, an Ethereum network detector implemented through the application ofsimulation technology, which is capable of aggregating all node records within the network and the interconnectednessbetween them. Utilizing this connection information, NodeHunter can procure more comprehensive insightsfor network status analysis compared to preceding detection methodologies. Throughout a three-month period ofunbroken surveillance of the Ethereum network, we obtained an excess of two million node records along with overone hundred million node acquaintances. Analysis of the gathered data revealed that an alarming 49% or more ofthese node records were maliciously forged.展开更多
Objective:To evaluate the therapeutic effects of Epimedium brevicornu Maxim.(EBM,Yin Yang Huo)on breast cancer using network pharmacology and in vitro validation.It also aimed to explore the novel targets and mechanis...Objective:To evaluate the therapeutic effects of Epimedium brevicornu Maxim.(EBM,Yin Yang Huo)on breast cancer using network pharmacology and in vitro validation.It also aimed to explore the novel targets and mechanisms of EBM in the treatment of breast cancer to facilitate the discovery of new drugs and their clinical application.Methods: Network pharmacology was used to identify and screen the components and targets of EBM for breast cancer treatment.Molecular docking was further screened the effective components and targets of EBM.Wound-healing assays and flow cytometry analysis were used to detect the ability of two compounds to intervene in the migration and apoptosis of MDA-MB-231 cells,and their mechanism of action was further explored using western blotting experiments.Results: EBM contained 19 active components.Among them wereβ-anhydroicaritin(Anhy)and isoliquiritigenin(Iso),which were selected for in vitro experiments.Treatment resulted in a dose-dependent suppression of MDA-MB-231 cell viability,with an IC_(50) of 23.73μmol/L for Iso and 21.28μmol/L for Anhy.In the wound healing assay,cells in Anhy and Iso groups exhibited considerable inhibition of migration at 48 h.In flow cytometry analysis,treatment with Iso(20μmol/L)for 96 h resulted in significantly higher levels of both early and late apoptosis in the Iso group than that in the control group(P=.004 and P=.014,respectively).Additionally,both Iso(20μmol/L)and Anhy(10 and 20μmol/L)induced cell necrosis at 96 h.Western blotting revealed that Anhy and Iso increased the expression of Bax and TBK1/NAK.Conclusion: These findings suggested that Anhy and Iso,the two components of EBM,inhibit MDA-MB-231 cell proliferation and migration of and induce their apoptosis,providing substantial support for future studies on breast cancer.展开更多
An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdope...An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdoped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W,the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier.Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 μm.展开更多
Background Individuals with diabetes have a significantly higher risk of developing chronic kidney disease(CKD)and higher levels of social isolation and loneliness compared with those without diabetes.Recently,the Ame...Background Individuals with diabetes have a significantly higher risk of developing chronic kidney disease(CKD)and higher levels of social isolation and loneliness compared with those without diabetes.Recently,the American Heart Association highlighted the importance of considering social determinants of health(SDOH)in conjunction with traditional risk factors in patients with diabetes.Aims To investigate the associations of loneliness and social isolation with incident CKD risk in patients with diabetes in the UK Biobank.Methods A total of 18972 patients with diabetes were included in this prospective study.Loneliness and Social Isolation Scales were created based on self-reported factors.An adjusted Cox proportional hazard model was used to investigate the associations of loneliness and social isolation with CKD risk among patients with diabetes.The relative importance in predicting CKD was also calculated alongside traditional risk factors.Results During a median follow-up of 10.8 years,1127 incident CKD cases were reported.A higher loneliness scale,but not social isolation,was significantly associated with a 25%higher risk of CKD,independent of traditional risk factors,among patients with diabetes.Among the individual loneliness factors,the sense of feeling lonely emerged as the primary contributing factor to the elevated risk of CKD.Compared with individuals not experiencing feelings of loneliness,those who felt lonely exhibited a 22%increased likelihood of developing CKD.In addition,feeling lonely demonstrated greater relative importance of predicting CKD compared with traditional risk factors such as body mass index,smoking,physical activity and diet.Conclusions This study indicates the significant relationship between loneliness and CKD risk among patients with diabetes,highlighting the need to address SDOH in preventing CKD in this population.展开更多
[Objectives]This study was conducted to investigate the differences of photosynthetic physiological characteristics of different varieties(strains),which will provide a theoretical basis for high photosynthesis effici...[Objectives]This study was conducted to investigate the differences of photosynthetic physiological characteristics of different varieties(strains),which will provide a theoretical basis for high photosynthesis efficiency breeding and application in Chinese chestnut.[Methods]Six Chinese chestnut varieties of Castanea mollissima‘Yanbao’,C.mollissima‘Yanqiu’,C.mollissima‘Yanchang’,C.mollissima‘Yanjia’,C.mollissima‘Qianxi 37’,and C.mollissima‘Hybrid 22’were used as the materials.Using the portable photosynthesis system Li-6400,we measured the photosynthetic characteristics and diurnal variation of leaf samples of six different chestnut varieties or strains.We fitted the light response curves and photosynthetic parameters using the leaf floating model.Additionally,we determined the chlorophyll content in the leaves using a UV-visible spectrophotometer.[Results]Among the six chestnut varieties or strains,‘Yanqiu’exhibited a significantly higher photosynthetic light saturation point(P LSP)compared to other five varieties,and‘Hybrid 22’ranked second,indicating that these two varieties had the strongest adaptation to high light intensity.The photosynthetic light compensation point(P LCP)of‘Yanchang’was significantly higher than other five varieties,and"Qianxi 37"ranked second,indicating that these two varieties had the strongest adaptation to low light intensity.Additionally,they exhibited higher chlorophyll content and maintained good photosynthetic characteristics even in shaded environments with weak light stress.Varieties‘Yanbao’and‘Yanjia’showed higher P LSP and lower P LCP,indicating that these two varieties have a wider range of adaptation to light intensity.They were capable of efficiently utilizing light across a broader spectrum of intensities.‘Yanqiu’had the highest maximum net photosynthetic rate(P n,max)and the lowest dark respiration rate(R d),along with the highest chlorophyll content.It indicated that‘Yanqiu’has strong photosynthetic capacity and organic matter accumulation ability.It also had the highest P LSP,enabling it to fully utilize the high light environment of the Yanshan Mountains and possessed high light efficiency characteristics.The P n,max of‘Yanqiu’was significantly higher than other varieties.‘Hybrid 22’and‘Yanbao’also exhibited significantly higher P n,max compared with‘Yanjia’and‘Qianxi 37’.‘Yanchang’had the lowest P n,max.The order of P n,max among the six chestnut varieties or strains was as follows:‘Yanqiu’>‘Hybrid 22’>‘Yanbao’>‘Yanjia’>‘Qianxi 37’>‘Yanchang’.[Conclusions]展开更多
基金supported by the National Natural Science Foundation of China(Nos.52225403,U2013603,52434004,and 52404365)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)+2 种基金the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015)the National Key Research and Development Program of China(2023YFF0615404)the Scientific Instrument Developing Project of Shenzhen University。
文摘The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金National Science Fund for Excellent Young Scholars,Grant/Award Number:52022066。
文摘The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.
基金supported by the National Natural Science Foundation of China(Grant No.62061014)Technological Innovation Projects in the Field of Artificial Intelligence in Liaoning province(Grant No.2023JH26/10300011)Basic Scientific Research Projects in Department of Education of Liaoning Province(Grant No.JYTZD2023021).
文摘Memristors are extensively used to estimate the external electromagnetic stimulation and synapses for neurons.In this paper,two distinct scenarios,i.e.,an ideal memristor serves as external electromagnetic stimulation and a locally active memristor serves as a synapse,are formulated to investigate the impact of a memristor on a two-dimensional Hindmarsh-Rose neuron model.Numerical simulations show that the neuronal models in different scenarios have multiple burst firing patterns.The introduction of the memristor makes the neuronal model exhibit complex dynamical behaviors.Finally,the simulation circuit and DSP hardware implementation results validate the physical mechanism,as well as the reliability of the biological neuron model.
基金the National Key Research and Development Program of China(No.2020YFB1005805)Peng Cheng Laboratory Project(Grant No.PCL2021A02)+2 种基金Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies(2022B1212010005)Shenzhen Basic Research(General Project)(No.JCYJ20190806142601687)Shenzhen Stable Supporting Program(General Project)(No.GXWD20201230155427003-20200821160539001).
文摘Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smartcontracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connectionmechanism, whereas an efficient data-sharing protocol constitutes as the bedrock of Blockchain network security.In this paper, we propose NodeHunter, an Ethereum network detector implemented through the application ofsimulation technology, which is capable of aggregating all node records within the network and the interconnectednessbetween them. Utilizing this connection information, NodeHunter can procure more comprehensive insightsfor network status analysis compared to preceding detection methodologies. Throughout a three-month period ofunbroken surveillance of the Ethereum network, we obtained an excess of two million node records along with overone hundred million node acquaintances. Analysis of the gathered data revealed that an alarming 49% or more ofthese node records were maliciously forged.
基金supported by the National Natural Science Foundation of China(81774319).
文摘Objective:To evaluate the therapeutic effects of Epimedium brevicornu Maxim.(EBM,Yin Yang Huo)on breast cancer using network pharmacology and in vitro validation.It also aimed to explore the novel targets and mechanisms of EBM in the treatment of breast cancer to facilitate the discovery of new drugs and their clinical application.Methods: Network pharmacology was used to identify and screen the components and targets of EBM for breast cancer treatment.Molecular docking was further screened the effective components and targets of EBM.Wound-healing assays and flow cytometry analysis were used to detect the ability of two compounds to intervene in the migration and apoptosis of MDA-MB-231 cells,and their mechanism of action was further explored using western blotting experiments.Results: EBM contained 19 active components.Among them wereβ-anhydroicaritin(Anhy)and isoliquiritigenin(Iso),which were selected for in vitro experiments.Treatment resulted in a dose-dependent suppression of MDA-MB-231 cell viability,with an IC_(50) of 23.73μmol/L for Iso and 21.28μmol/L for Anhy.In the wound healing assay,cells in Anhy and Iso groups exhibited considerable inhibition of migration at 48 h.In flow cytometry analysis,treatment with Iso(20μmol/L)for 96 h resulted in significantly higher levels of both early and late apoptosis in the Iso group than that in the control group(P=.004 and P=.014,respectively).Additionally,both Iso(20μmol/L)and Anhy(10 and 20μmol/L)induced cell necrosis at 96 h.Western blotting revealed that Anhy and Iso increased the expression of Bax and TBK1/NAK.Conclusion: These findings suggested that Anhy and Iso,the two components of EBM,inhibit MDA-MB-231 cell proliferation and migration of and induce their apoptosis,providing substantial support for future studies on breast cancer.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10225417 and 61675009)the Natural Science Foundation of Beijing Municipality (Grant Nos. 4204091 and KZ201910005006)the China Postdoctoral Science Foundation (Grant No. 212423)。
文摘An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdoped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W,the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier.Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 μm.
基金supported by grants from the National Heart,Lung,and Blood Institute(HL071981,HL034594,HL126024)the National Institute of Diabetes and Digestive and Kidney Diseases(DK115679,DK091718,DK100383,DK078616).
文摘Background Individuals with diabetes have a significantly higher risk of developing chronic kidney disease(CKD)and higher levels of social isolation and loneliness compared with those without diabetes.Recently,the American Heart Association highlighted the importance of considering social determinants of health(SDOH)in conjunction with traditional risk factors in patients with diabetes.Aims To investigate the associations of loneliness and social isolation with incident CKD risk in patients with diabetes in the UK Biobank.Methods A total of 18972 patients with diabetes were included in this prospective study.Loneliness and Social Isolation Scales were created based on self-reported factors.An adjusted Cox proportional hazard model was used to investigate the associations of loneliness and social isolation with CKD risk among patients with diabetes.The relative importance in predicting CKD was also calculated alongside traditional risk factors.Results During a median follow-up of 10.8 years,1127 incident CKD cases were reported.A higher loneliness scale,but not social isolation,was significantly associated with a 25%higher risk of CKD,independent of traditional risk factors,among patients with diabetes.Among the individual loneliness factors,the sense of feeling lonely emerged as the primary contributing factor to the elevated risk of CKD.Compared with individuals not experiencing feelings of loneliness,those who felt lonely exhibited a 22%increased likelihood of developing CKD.In addition,feeling lonely demonstrated greater relative importance of predicting CKD compared with traditional risk factors such as body mass index,smoking,physical activity and diet.Conclusions This study indicates the significant relationship between loneliness and CKD risk among patients with diabetes,highlighting the need to address SDOH in preventing CKD in this population.
基金Supported by National Key R&D Program of China (2022YFD2200400)Doctoral Started Fund of Hebei Normal University of Science and Technology (2023YB026)Hebei Qinglong Chinese Chestnut Technological Yard.
文摘[Objectives]This study was conducted to investigate the differences of photosynthetic physiological characteristics of different varieties(strains),which will provide a theoretical basis for high photosynthesis efficiency breeding and application in Chinese chestnut.[Methods]Six Chinese chestnut varieties of Castanea mollissima‘Yanbao’,C.mollissima‘Yanqiu’,C.mollissima‘Yanchang’,C.mollissima‘Yanjia’,C.mollissima‘Qianxi 37’,and C.mollissima‘Hybrid 22’were used as the materials.Using the portable photosynthesis system Li-6400,we measured the photosynthetic characteristics and diurnal variation of leaf samples of six different chestnut varieties or strains.We fitted the light response curves and photosynthetic parameters using the leaf floating model.Additionally,we determined the chlorophyll content in the leaves using a UV-visible spectrophotometer.[Results]Among the six chestnut varieties or strains,‘Yanqiu’exhibited a significantly higher photosynthetic light saturation point(P LSP)compared to other five varieties,and‘Hybrid 22’ranked second,indicating that these two varieties had the strongest adaptation to high light intensity.The photosynthetic light compensation point(P LCP)of‘Yanchang’was significantly higher than other five varieties,and"Qianxi 37"ranked second,indicating that these two varieties had the strongest adaptation to low light intensity.Additionally,they exhibited higher chlorophyll content and maintained good photosynthetic characteristics even in shaded environments with weak light stress.Varieties‘Yanbao’and‘Yanjia’showed higher P LSP and lower P LCP,indicating that these two varieties have a wider range of adaptation to light intensity.They were capable of efficiently utilizing light across a broader spectrum of intensities.‘Yanqiu’had the highest maximum net photosynthetic rate(P n,max)and the lowest dark respiration rate(R d),along with the highest chlorophyll content.It indicated that‘Yanqiu’has strong photosynthetic capacity and organic matter accumulation ability.It also had the highest P LSP,enabling it to fully utilize the high light environment of the Yanshan Mountains and possessed high light efficiency characteristics.The P n,max of‘Yanqiu’was significantly higher than other varieties.‘Hybrid 22’and‘Yanbao’also exhibited significantly higher P n,max compared with‘Yanjia’and‘Qianxi 37’.‘Yanchang’had the lowest P n,max.The order of P n,max among the six chestnut varieties or strains was as follows:‘Yanqiu’>‘Hybrid 22’>‘Yanbao’>‘Yanjia’>‘Qianxi 37’>‘Yanchang’.[Conclusions]