Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from t...Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.展开更多
Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be ...Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification.展开更多
Carbon capture and storage(CCS)technology is an imperative,strategic,and constitutive method to considerably reduce anthropogenic CO_(2)emissions and alleviate climate change issues.The ocean is the largest active car...Carbon capture and storage(CCS)technology is an imperative,strategic,and constitutive method to considerably reduce anthropogenic CO_(2)emissions and alleviate climate change issues.The ocean is the largest active carbon bank and an essential energy source on the Earth's surface.Compared to oceanic nature-based carbon dioxide removal(CDR),carbon capture from point sources with ocean storage is more appropriate for solving short-term climate change problems.This review focuses on the recent state-of-the-art developments in offshore carbon storage.It first discusses the current status and development prospects of CCS,associated with the chailenges and uncertainties of oceanic nature-based CDR.The second section outlines the mechanisms,sites,advantages,and ecologic hazards of direct offshore CO_(2)injection.The third section emphasizes the mechanisms,schemes,influencing factors,and recovery efficiency of ocean-based CO-CH_(4)replacement and CO_(2)-enhanced oil recovery are reviewed.In addition,this review discusses the economic aspects of offshore CCS and the preponderance of offshore CCs hubs.Finally,the upsides,limitations,and prospects for further investigation of offshore CO_(2)storage are presented.展开更多
The utilization of supported amines as adsorbents in direct air capture(DAC)has been demonstrated to be a promising strategy for the reduction of CO_(2)emissions.To improve the performance of amine-based adsorbents,th...The utilization of supported amines as adsorbents in direct air capture(DAC)has been demonstrated to be a promising strategy for the reduction of CO_(2)emissions.To improve the performance of amine-based adsorbents,the incorporation of additives has been widely adopted.In the present study,we conduct a comprehensive comparison of seven additives on tetraethylenepentamine-impregnated mesoporous silica as a representative amine-based adsorbent.The results indicate thatminor molecularweight additiveswith hydroxyl groups show improved adsorption-desorption performance and increase oxidative stability.A proposed mechanism for these improvements is the combined physical and chemical promotion effects of hydroxyl groups.Through a comprehensive review of existing literature,it is found that the effects of additives on amine-based adsorbents are dependent on factors,such as additive type,pristine adsorbent properties,incorporation method,and testing conditions.Based on these findings,it is recommended that future DAC systems prioritize the use of hydroxyl-containing additives,whereas higher CO_(2)concentration and temperature capture may benefit from the incorporation of additives without hydroxyl groups.These conclusions are expected to contribute to the design of efficient adsorbents for CO_(2)capture.展开更多
基金supported by the Shanghai Agricultural Science and Technology Program (2022-02-08-00-12-F01176)he National Natural Science Foundation of China (52006135)
文摘Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.
基金financed by Shanxi Province Science and Technology Major Projects of MH2015-06
文摘Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification.
基金the financial support from the Science and Technology Commission of Shanghai Municipality(No.21DZ1206200)the Shanghai Agriculture Science and Technology Program(No.2022-02-08-00-12-F01176)the financial support from the National Natural Science Foundation of China(Nos.52006135 and 72140008),respectively.
文摘Carbon capture and storage(CCS)technology is an imperative,strategic,and constitutive method to considerably reduce anthropogenic CO_(2)emissions and alleviate climate change issues.The ocean is the largest active carbon bank and an essential energy source on the Earth's surface.Compared to oceanic nature-based carbon dioxide removal(CDR),carbon capture from point sources with ocean storage is more appropriate for solving short-term climate change problems.This review focuses on the recent state-of-the-art developments in offshore carbon storage.It first discusses the current status and development prospects of CCS,associated with the chailenges and uncertainties of oceanic nature-based CDR.The second section outlines the mechanisms,sites,advantages,and ecologic hazards of direct offshore CO_(2)injection.The third section emphasizes the mechanisms,schemes,influencing factors,and recovery efficiency of ocean-based CO-CH_(4)replacement and CO_(2)-enhanced oil recovery are reviewed.In addition,this review discusses the economic aspects of offshore CCS and the preponderance of offshore CCs hubs.Finally,the upsides,limitations,and prospects for further investigation of offshore CO_(2)storage are presented.
基金Science and Technology Commission of Shanghai Municipality(STCSM),Grant/Award Number:21DZ1206200National Natural Science Foundation of China,Grant/Award Numbers:72140008,52006135。
文摘The utilization of supported amines as adsorbents in direct air capture(DAC)has been demonstrated to be a promising strategy for the reduction of CO_(2)emissions.To improve the performance of amine-based adsorbents,the incorporation of additives has been widely adopted.In the present study,we conduct a comprehensive comparison of seven additives on tetraethylenepentamine-impregnated mesoporous silica as a representative amine-based adsorbent.The results indicate thatminor molecularweight additiveswith hydroxyl groups show improved adsorption-desorption performance and increase oxidative stability.A proposed mechanism for these improvements is the combined physical and chemical promotion effects of hydroxyl groups.Through a comprehensive review of existing literature,it is found that the effects of additives on amine-based adsorbents are dependent on factors,such as additive type,pristine adsorbent properties,incorporation method,and testing conditions.Based on these findings,it is recommended that future DAC systems prioritize the use of hydroxyl-containing additives,whereas higher CO_(2)concentration and temperature capture may benefit from the incorporation of additives without hydroxyl groups.These conclusions are expected to contribute to the design of efficient adsorbents for CO_(2)capture.