背景急性缺血性卒中(AIS)高发,及时恢复脑血流是治疗的关键,超时间窗就诊患者无更多促进脑血流恢复的治疗手段。研究远隔缺血后适应(RIPostC)治疗对AIS超时间窗就诊患者的临床疗效、并发症和预后,具有重要的临床意义。目的探究RIPostC...背景急性缺血性卒中(AIS)高发,及时恢复脑血流是治疗的关键,超时间窗就诊患者无更多促进脑血流恢复的治疗手段。研究远隔缺血后适应(RIPostC)治疗对AIS超时间窗就诊患者的临床疗效、并发症和预后,具有重要的临床意义。目的探究RIPostC治疗对AIS超时间窗患者干预的影响,为超时间窗就诊的AIS患者寻求安全、有效的脑血流恢复治疗方式。方法本研究采用随机、分组、安慰剂对照法进行试验。选取2021-09-02—2022-08-31于北京航天总医院神经内科病房住院治疗的超溶栓时间窗(发病时间>6 h)的AIS患者为研究对象。依据随机数字表法将患者分为对照组和试验组。试验期+随访期共90 d,均使用同等的一般治疗、脑血管病常规治疗,试验组在此基础上给予RIPostC治疗14 d(28次),对照组给予模拟的RIPostC治疗14 d(28次)。在干预前和干预后30 d、干预后90 d,采用改良Rankin量表(mRS)、美国国立卫生研究院卒中量表(NIHSS)评估两组患者神经功能,简易精神状态检查量表(MMSE)、蒙特利尔认知评估量表(MoCA)评估患者认知功能,工具性日常生活能力量表(IADL)评估日常生活能力,焦虑自评量表(SAS)、抑郁自评量表(SDS)评估精神状态,经颅多普勒超声(TCD)评估脑血流速度,以白介素(IL)-6反映炎症情况。结果122例患者中,最终完成试验及随访99例,其中试验组49例,对照组50例。两组患者性别、年龄、基础疾病(高血压、糖尿病、冠心病)及基线NIHSS评分比较,差异无统计学意义(P>0.05)。重复测量方差分析结果示,时间与组别对MMSE、MoCA、mRS、NIHSS、脑血流速度、IL-6存在交互作用(P<0.05),时间和组别对MMSE、MoCA、NIHSS、脑血流速度、IL-6主效应显著(P<0.05),时间对mRS、SAS、SDS、IADL主效应显著(P<0.05)。试验组干预后30、90 d MMSE、MoCA评分及脑血流速度均高于对照组,mRS、NIHSS评分均低于对照组(P<0.05);试验组干预后30、90 d SDS、IADL评分低于对照组(P<0.05);试验组干预后30 d SAS评分高于对照组,IL-6低于对照组(P<0.05)。99例患者中共有23例患者发生不良反应,其中试验组17例,对照组6例,两组皮肤瘀点、头晕、心慌、胸闷发生率比较,差异无统计学意义(P>0.05);对照组患者皮肤瘀斑发生率[4.00%(2/50)与12.24%(6/49)]、总不良反应发生率[12.00%(6/50)与34.69%(17/49)]低于试验组(P<0.05)。结论RIPostC治疗可降低AIS患者的炎症反应,对神经功能、认知功能抑郁情绪及颅内血流速度可起到积极的改善效果。展开更多
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ...All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system.展开更多
Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal c...Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal cancer(CRC)progression.The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells,as well as the underlying mechanism.The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues,as well as in radiosensitive and radioresistant samples.The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test.Functional assays such as cell proliferation,colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation.RNA pull-down assay andfluorescence in situ hybridization(FISH)were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated-and Rad3-related(ATR).HOTAIR was significantly upregulated in CRC tumor tissues,especially in radioresistant tumor samples.The elevated expression of HOTAIR was correlated with more advanced histological grades,distance metastasis and the poor prognosis in patients with CRC.Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells.HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model.Moreover,the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway.Silencing HOTAIR impaired the ATR-ATR interacting protein(ATRIP)complex and signaling in cell cycle progression.Collectively,the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR.展开更多
Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice o...Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.展开更多
文摘背景急性缺血性卒中(AIS)高发,及时恢复脑血流是治疗的关键,超时间窗就诊患者无更多促进脑血流恢复的治疗手段。研究远隔缺血后适应(RIPostC)治疗对AIS超时间窗就诊患者的临床疗效、并发症和预后,具有重要的临床意义。目的探究RIPostC治疗对AIS超时间窗患者干预的影响,为超时间窗就诊的AIS患者寻求安全、有效的脑血流恢复治疗方式。方法本研究采用随机、分组、安慰剂对照法进行试验。选取2021-09-02—2022-08-31于北京航天总医院神经内科病房住院治疗的超溶栓时间窗(发病时间>6 h)的AIS患者为研究对象。依据随机数字表法将患者分为对照组和试验组。试验期+随访期共90 d,均使用同等的一般治疗、脑血管病常规治疗,试验组在此基础上给予RIPostC治疗14 d(28次),对照组给予模拟的RIPostC治疗14 d(28次)。在干预前和干预后30 d、干预后90 d,采用改良Rankin量表(mRS)、美国国立卫生研究院卒中量表(NIHSS)评估两组患者神经功能,简易精神状态检查量表(MMSE)、蒙特利尔认知评估量表(MoCA)评估患者认知功能,工具性日常生活能力量表(IADL)评估日常生活能力,焦虑自评量表(SAS)、抑郁自评量表(SDS)评估精神状态,经颅多普勒超声(TCD)评估脑血流速度,以白介素(IL)-6反映炎症情况。结果122例患者中,最终完成试验及随访99例,其中试验组49例,对照组50例。两组患者性别、年龄、基础疾病(高血压、糖尿病、冠心病)及基线NIHSS评分比较,差异无统计学意义(P>0.05)。重复测量方差分析结果示,时间与组别对MMSE、MoCA、mRS、NIHSS、脑血流速度、IL-6存在交互作用(P<0.05),时间和组别对MMSE、MoCA、NIHSS、脑血流速度、IL-6主效应显著(P<0.05),时间对mRS、SAS、SDS、IADL主效应显著(P<0.05)。试验组干预后30、90 d MMSE、MoCA评分及脑血流速度均高于对照组,mRS、NIHSS评分均低于对照组(P<0.05);试验组干预后30、90 d SDS、IADL评分低于对照组(P<0.05);试验组干预后30 d SAS评分高于对照组,IL-6低于对照组(P<0.05)。99例患者中共有23例患者发生不良反应,其中试验组17例,对照组6例,两组皮肤瘀点、头晕、心慌、胸闷发生率比较,差异无统计学意义(P>0.05);对照组患者皮肤瘀斑发生率[4.00%(2/50)与12.24%(6/49)]、总不良反应发生率[12.00%(6/50)与34.69%(17/49)]低于试验组(P<0.05)。结论RIPostC治疗可降低AIS患者的炎症反应,对神经功能、认知功能抑郁情绪及颅内血流速度可起到积极的改善效果。
基金supported by the Ensemble Grant for Early Career Researchers 2022 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,the Iwatani Naoji Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,and JP18H05513+2 种基金the Center for Computational Materials Science,Institute for Materials Research,Tohoku University for the use of MASAMUNEIMR(Nos.202212-SCKXX0204 and 202208-SCKXX-0212)the Institute for Solid State Physics(ISSP)at the University of Tokyo for the use of their supercomputersthe China Scholarship Council(CSC)fund to pursue studies in Japan.
文摘All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system.
基金This study was supported by the Inner Mongolia Science and Technology Department Science and Technology Research Project(No.2021GG0270)National Natural Science Foundation of China(81860534)+5 种基金Natural Science Foundation of Inner Mongolia(2021MS08152)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22004)Scientific and Technological Innovative Research Team for Inner Mongolia Medical University of Transformation Application of Organoid in Medical and Industrial Interdiscipline(YKD2022TD002)Major Project of Inner Mongolia Medical University(YKD2022 ZD002)Radiobiology System and Team Construction of Radiotherapy for Inner Mongolia Medical University(YKD2022XK014)Key Laboratoy of Radiation Physics and Biology of Inner Mongolia Medical University(PIKY2023030).
文摘Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal cancer(CRC)progression.The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells,as well as the underlying mechanism.The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues,as well as in radiosensitive and radioresistant samples.The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test.Functional assays such as cell proliferation,colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation.RNA pull-down assay andfluorescence in situ hybridization(FISH)were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated-and Rad3-related(ATR).HOTAIR was significantly upregulated in CRC tumor tissues,especially in radioresistant tumor samples.The elevated expression of HOTAIR was correlated with more advanced histological grades,distance metastasis and the poor prognosis in patients with CRC.Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells.HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model.Moreover,the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway.Silencing HOTAIR impaired the ATR-ATR interacting protein(ATRIP)complex and signaling in cell cycle progression.Collectively,the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR.
基金supported by the Ensemble Grant for Early Career Researchers 2022-2023 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,JP18H05513,and JP23K13542.F.Y.and Q.W.acknowledge the China Scholarship Council(CSC)to support their studies in Japan.
文摘Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.