The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using...The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using the complex momentum representation method applied to deformation and continuum coupling.By examining the evolution of the weakly bound and resonant levels near the Fermi surface,s–d orbital reversals and certain prolate deformations were observed.In addition,by analyzing the evolution of the occupation probabilities and density distributions occupied by valence neutrons,we found that the ground state of15B did not exhibit a halo and the ground states of17B and19B exhibited halos at 0.6≤β2≤0.7 and0.3≤β2≤0.7,respectively.The low-l components in the valence levels that are weakly bound or embedded in the continuous spectrum lead to halo formation.展开更多
基金the National Natural Science Foundation of China(Nos.12205001,11935001,and 12204001)the Scientific Research program of Anhui University of Finance and Economics(Nos.ACKYC22080 and ACKYC220801).
文摘The properties of exotic nuclei are the focus of the present research.Two-neutron halo structures of neutron-rich17,19B were experimentally confirmed.We studied the formation mechanism of halo phenomena in17,19B using the complex momentum representation method applied to deformation and continuum coupling.By examining the evolution of the weakly bound and resonant levels near the Fermi surface,s–d orbital reversals and certain prolate deformations were observed.In addition,by analyzing the evolution of the occupation probabilities and density distributions occupied by valence neutrons,we found that the ground state of15B did not exhibit a halo and the ground states of17B and19B exhibited halos at 0.6≤β2≤0.7 and0.3≤β2≤0.7,respectively.The low-l components in the valence levels that are weakly bound or embedded in the continuous spectrum lead to halo formation.