期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Mechanical property of cylindrical sandwich shell with gradient core of entangled wire mesh
1
作者 Xin Xue Chao Zheng +1 位作者 Fu-qiang Lai xue-qian wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期510-522,共13页
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed... To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation. 展开更多
关键词 Entangled wire mesh Gradient cylindrical sandwich shell Vacuum brazing Secant stiffness Damping
下载PDF
Ethylene purification in a metal–organic framework over a wide temperature range via pore confinement
2
作者 xue-qian wu Peng-Dan Zhang +4 位作者 Xin Zhang Jing-Hao Liu Tao He Jiamei Yu Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1703-1710,共8页
The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a... The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a microporous metal–organic framework(MOF) BUT-315-a as a C_(2)H_(6)-selective adsorbent for the separation of C2H6/C2H4gas mixture. BUT-315-a combines good IAST selectivity of 2.35 with high C_(2)H_(6)uptake of 97.5 cm^(3)g^(-1), giving superior high separation potential ΔQ(2226 mmol L^(-1)) for equimolar C_(2)H_(6)/C_(2)H_(4) at 298 K. Impressively, such excellent performance can be preserved at higher temperatures of 313 and 323 K to accommodate industrial conditions. Efficient dynamic separation performance of BUT-315-a has been demonstrated by column breakthrough experiments under varied temperatures and gas ratios. Theoretical calculations further reveal multiple synergistic interactions between C_(2)H_(6) and the framework. This work highlights a new benchmark material for C_(2)H_(6)/C_(2)H_(4)separation and provides guidance for designing adsorbent for separation applications. 展开更多
关键词 Metal–organic framework Adsorptive separation Ethylene purification Temperature adaptability Pore confinement
下载PDF
A 3D Ni_(8)-cluster-based MOF as a molecular electrocatalyst for alcohol oxidation in alkaline media
3
作者 Wei-Juan Chen Tian-Yu Zhang +5 位作者 xue-qian wu Yong-Shuang Li Yunling Liu Ya-Pan wu Zhao-Bo He Dong-Sheng Li 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第2期5-8,共4页
1.Introduction DAFCs offer significant promise for compact electric devices through the consumption of liquid fuels as one of the renewable energy sources,with minimal environmental effects and prominent energy densit... 1.Introduction DAFCs offer significant promise for compact electric devices through the consumption of liquid fuels as one of the renewable energy sources,with minimal environmental effects and prominent energy density[1-4].Because of the fuel crossover phenomenon and sluggish kinetics of the alcohol oxidation. 展开更多
关键词 ALCOHOL ALKALINE CLUSTER
原文传递
Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting 被引量:2
4
作者 Jian Zhou Yibo Dou +5 位作者 Tao He Awu Zhou Xiang-Jing Kong xue-qian wu Tongxin Liu Jian-Rong Li 《Nano Research》 SCIE EI CSCD 2021年第12期4548-4555,共8页
Enhancing electrocatalytic water splitting performance by modulating the intrinsic electronic structure is of great importance. Here, porous bimetallic oxide and chalcogenide nanosheets grown on carbon paper denoted a... Enhancing electrocatalytic water splitting performance by modulating the intrinsic electronic structure is of great importance. Here, porous bimetallic oxide and chalcogenide nanosheets grown on carbon paper denoted as NiCo2X4/CP (X = O, S, and Se) are prepared to demonstrate how the anion components affect the electronic structures and thereby disclose the correlation between their intermediates interaction and catalytic activities. The experimental characterization and theoretical calculation demonstrate that Se and S substitution can promote the ratio of Co^(3+)/Co^(2+) and thereby modulate the electronic structure accompanied with the upshift of d band centers, which not only enhance the inner conductivity but also regulate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H and hydroperoxy intermediates towards respective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As a result, a full alkaline electrolyzer using NiCo2Se4/CP and NiCo2S4/CP as cathode and anode delivers a low voltage of 1.51 V at 10 mA·cm^(−2), which is comparable even superior to most transition metal-based electrolyzers. 展开更多
关键词 electrocatalytic overall water splitting electronic structure bimetallic chalcogenide high valence Co3+ intermediates interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部