A non-autonomous single species dispersal model is considered, in which individual member of the population has a life history that goes through two stages, immature and mature. By applying the theory of monotone and ...A non-autonomous single species dispersal model is considered, in which individual member of the population has a life history that goes through two stages, immature and mature. By applying the theory of monotone and concave operators to functional differential equations, we establish conditions under which the system admits a positive periodic solution which attracts all other positive solutions.展开更多
We present a class of asymptotically optimal successive overrelaxation methods for solving the large sparse system of linear equations. Numerical computations show that these new methods are more efficient and robust ...We present a class of asymptotically optimal successive overrelaxation methods for solving the large sparse system of linear equations. Numerical computations show that these new methods are more efficient and robust than the classical successive overrelaxation method.展开更多
基金the Special Fund for Major State Basic Research Projects (973, G 1999032805)National Hitech Program (863,No.2002AA104540)+1 种基金Postdoctor Fund of China (No.2003033243)the National Natural Science Foundation of China (No.10171106).
文摘A non-autonomous single species dispersal model is considered, in which individual member of the population has a life history that goes through two stages, immature and mature. By applying the theory of monotone and concave operators to functional differential equations, we establish conditions under which the system admits a positive periodic solution which attracts all other positive solutions.
基金Subsidized by the Special Funds For Major State Basic Research Project G1999032803.
文摘We present a class of asymptotically optimal successive overrelaxation methods for solving the large sparse system of linear equations. Numerical computations show that these new methods are more efficient and robust than the classical successive overrelaxation method.