Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disa...Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disadvantages of BSCs research for the development and application of BSCs theory.Bibliometric analysis of 2,186 BSCs literatures from Web of Science showed an exponential growth trend,as China and the United States as the top 2 in terms of publication volume.High quality publications are mainly from European and American countries,such as the United States,Germany and Spain.The top 3 publishers are Journal of Arid Environments,Soil Biology&Biochemistry and Plant and Soil,and disciplines include ecology,environmental science,and soil science,etc..Research institutions mainly affiliate to the Chinese Academy of Sciences,United States Department of the Interior,United States Geological Survey,Hebrew University of Jerusalem,Consejo Superior de Investigaciones Cientificas,and Universidad Rey Juan Carlos.Authors mainly come from United States,Israel,Spain and China.Funds are mainly from the National Natural Science Foundation of China,Spanish Government,Chinese Academy of Sciences,and National Science Foundation of the United States.Biological soil crusts(biocrusts,cyanobacteria,lichens,moss crusts,bryophytes),drylands,climate change,photosynthesis and desert are high-frequency keywords.Future research will focus on the driving mechanisms of BSCs on global biogeochemical cycles,maintaining global biodiversity on important ecological processes,global C,N,and P cycles.The impact on biological invasion,sandstorms,and water balance,multifunctional and reciprocal mechanisms for maintaining the stability of desert and sandy ecosystems,and impact on the formulation of management policies for arid ecosystems,corresponding to global climate change,and the estimation of regional,local,and microscale distribution of BSCs based on machine deep learning modeling gradually focus on.The ecosystem service functions of BSCs,the soil and water conservation and soil stability mediated by BSCs in arid and semi-arid regions,and the excavation of stress resistant genes for BSCs will be emphasized.展开更多
Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however the information on how dune stabilization influences the spatial scale dependence of plant diversity is still la...Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however the information on how dune stabilization influences the spatial scale dependence of plant diversity is still lacking. In this study, we measured the plant species richness, soil properties and altitude across four spatial scales (1, 10, 100 and 1,000 m2) at three different dune stabilization stages (mobile dune, semi-fixed dune and fixed dune) in Horqin Sandy Land, Northern China. We also examined the relationships between plant species richness, community composition and environmental factors along the gradient of dune stabilization. Our results showed that plant species richness increased with the increase of spatial scales in each dune stabilization stage, as well as with the increase of dune stabilization degrees. Canonical correspondence analysis (CCA) showed that plant distribu- tions in the processes of dune stabilization were determined by the combined environmental gradient in relation to soil organic carbon (SOC), total nitrogen (TN), carbon/nitrogen (C/N), pH, electrical conductivity (EC), soil water content (SWC), fine sand (FS), very fine sand (VFS), silt and clay (SC), and altitude. Plant species richness was significantly and positively correlated to SOC and TN in mobile dune, and significantly and positively correlated to SOC, TN, C/N, VFS and SC in semi-fixed dune. However, no significant correlation between plant species richness and environmental factors was observed in fixed dune. In addition, plant species richness in different dune stabili- zation stages was also determined by the combined gradient of soil properties and altitude. These results suggest that plant species richness has obvious scale dependence along the gradient of dune stabilization. Soil resources depending on dune habitats and environmental gradients caused by dune stabilization are important factors to de- termine the scale dependence of species diversity in sand dune ecosystems.展开更多
Plant root exudates contain various organic and inorganic components that include glucose, citric and oxalic acid. These components affect rhizosphere microbial and microfaunal activities, but the mechanisms are not f...Plant root exudates contain various organic and inorganic components that include glucose, citric and oxalic acid. These components affect rhizosphere microbial and microfaunal activities, but the mechanisms are not fully known. Studies concerned from degraded grassland ecosystems with low soil carbon(C) contents are rare, in spite of the global distribution of grasslands in need of restoration. All these have a high potential for carbon sequestration, with a reduced carbon content due to overutilization. An exudate component that rapidly decomposes will increase soil respiration and CO2 emission, while a component that reduces decomposition of native soil carbon can reduce CO2 emission and actually help sequestering carbon in soil. Therefore, to investigate root exudate effects on rhizosphere activity, citric acid, glucose and oxalic acid(0.6 g C/kg dry soil) were added to soils from three biotopes(grassland, fixed dune and mobile dune) located in Naiman, Horqin Sandy Land, Inner Mongolia, China) and subjected to a 24-day incubation experiment together with a control. The soils were also analyzed for general soil properties. The results show that total respiration without exudate addition was highest in grassland soil, intermediate in fixed dune and lowest in mobile dune soil. However, the proportion of native soil carbon mineralized was highest in mobile dune soil, reflecting the low C/N ratio found there. The exudate effects on CO2-C emissions and other variables differed somewhat between biotopes, but total respiration(including that from the added substrates) was significantly increased in all combinations compared with the control, except for oxalic acid addition to mobile dune soil, which reduced CO2-C emissions from native soil carbon. A small but statistically significant increase in pH by the exudate additions in grassland and fixed dune soil was observed, but there was a major decrease from acid additions to mobile dune soil. In contrast, electrical conductivity decreased in grassland and fixed dune soil and increased in mobile dune. Thus, discrete components of root exudates affected soil environmental conditions differently, and responses to root exudates in soils with low carbon contents can differ from those in normal soils. The results indicate a potential for, e.g., acid root exudates to decrease decomposition rate of soil organic matter in low carbon soils, which is of interest for both soil restoration and carbon sequestration.展开更多
Nutrient resorption is an important conservation mechanism for plants to overcome nutrient limitation in the less fertile area of desertifled land. In the semi-arid Horqin Sandy Land of Northern China, the shrub Artem...Nutrient resorption is an important conservation mechanism for plants to overcome nutrient limitation in the less fertile area of desertifled land. In the semi-arid Horqin Sandy Land of Northern China, the shrub Artemisia ha/odendron usually colonizes into the bare ground of severely desertified land as a pioneer species. It is, therefore, expected that A. ha/odendron will be less dependent on current nutrient uptake through efficient and proficient re- sorption of nutrients. In this study, we found that averaged nitrogen (N) and phosphorus (P) concentrations in se- nesced leaves significantly varied from 12.3 and 1.2 mg/g in the shifting sand dune to 15.9 and 1.9 mg/g in the fixed sand dune, respectively, suggesting that foliar N and P resorption of A. ha/odendron were more proficient in the shifting sand dune. In particular, positive relationships between nutrient concentrations in senesced leaves and soil nutrient availability indicate that A. ha/odendron in infertile habitats is more likely to manage with a low level of nu- trients in senesced leaves, giving this species an advantage in infertile soil. Moreover, foliar N- and P-resorption efficiencies and proficiencies showed limited inter-annual variability although annual precipitation varied greatly among 2007-2009. However, N and P resorption of A. ha/oc/endron were not more efficient and proficient than those previously reported for other shrubs, indicating that the pioneer shrub in sand dune environments does not rely more heavily than other plants on the process of resorption to conserve nutrients. Incomplete resorption of nutrients in A. halodendron suggests that senesced-leaf fall would return litter with high quality to the soil, and thereby would indirectly improve soil nutrient availability. The restoration of desertified land, therefore, may be ac- celerated after A. halodendron pioneers into shifting sand dunes.展开更多
Soil seed banks play an important role in the distribution and composition of plant communities in semiarid grassland ecosystems. However, information on how spatial scale influences the spatial heterogeneity of soil ...Soil seed banks play an important role in the distribution and composition of plant communities in semiarid grassland ecosystems. However, information on how spatial scale influences the spatial heterogeneity of soil seed banks in a grassland under grazing disturbance is still lacking. Based on field sampling and greenhouse germination, we measured the species composition and seed density of soil seed banks at different spatial scales (30 mx30 m, 30 mx60 m and 30 mx90 m) along a topographical gradient in a sandy grassland in Horqin Sand Land, Northern China. By applying geostatistical methods, we examined how spatial scale and topography affected the spatial distribution of soil seed banks in the study area. Our results showed that the total number of species in soil seed banks, as well as the number of dominant annuals, increased with the increase of spatial scales. Seed density in soil seed banks decreased with the increase of spatial scales due to an increase in the slopes and relative heights of the sampling points. Geostatistical analysis showed that the relative structural variance (C/(C0+C)) of seed density and species richness were over 65% for all spatial scales, indicating that these variables had an ob- vious spatial autocorrelation and the spatial structured variance accounted for the largest proportion of the total sample variance. Spatial autocorrelation of seed density in soil seed banks increased with the increase of measured scales, while that of species richness showed a reverse trend. These results suggest that the total number of spe- cies in soil seed banks is spatial scale dependent and lower topography may accommodate more seeds. Spatial distribution of seed density in soil seed banks is also scale dependent due to topographic variation. Grassland management, therefore, needs to consider local grazing disturbance regime, spatial scale and topography.展开更多
Land cover change plays an essential role in the alternation of soils properties. By field investigation and applying satellite images, land cover information in the Shelihu wetland was carried out in an area of 2,819...Land cover change plays an essential role in the alternation of soils properties. By field investigation and applying satellite images, land cover information in the Shelihu wetland was carried out in an area of 2,819 hm2 in 1985, 1995, 2000, 2005, 2010 and 2011, respectively, in Horqin Sandy Land. A total of 57 soil sampling sites across Shelihu were chosen in wet meadow (CL0), cropland (CL) and sandy land (SL) according to the spatial characteristics of water body change. Soil texture, organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) contents, electrical conductivity (EC) and pH were measured at the soil depths of 0-10, 10-20 and 20-40 cm to examine the influence of agricultural conversion and continuous cultivation on soil properties. The results showed that the study area was covered by water body in 1985, which gradually declined afterwards and then reclaimed rapidly at a mean annual rate of 132.1 hm2/a from wet meadow to cropland since 1995. In 2011, water body was drained and the area was occupied by 10.8% of CL0, 76.9% of CL and 12.3% of SL. Large amounts of SOC, TN and TP were accumulated in the above depths in CL0. Soil in CL0 also had higher EC and silt and clay fractions, lower pH than in SL and CL. Soil in SL was seriously degraded with lower contents of SOC, TN and TP than in CL and CL0. SOC, TN content and EC in CL decreased with the increase of cultivation age, while pH showed a reverse trend with significance at plough horizon. The agricultural conversion in Shelihu was driven by the comprehensive factors of precipitation reduction, economic development and intense competitions for irrigation water. Continuous cultivation in this process is not sustainable because of SOC degradation and nutrient content reduction. The key point is that conventional tillage and removal of residuals induced further land degradation. Wetland reclamation for immediate economic interests led to greater costs in the long-term environmental restoration in Horqin Sandy Land.展开更多
Desertification reversion is an interactive process involving climate, land use change, and water processes. In order to reveal the relationship between desertification reversion and these factors, we analyzed histori...Desertification reversion is an interactive process involving climate, land use change, and water processes. In order to reveal the relationship between desertification reversion and these factors, we analyzed historical data on precipitation, air temperature, desertified land changes, underground water tables, and water body changes in Naiman County in the central part of Horqin Sandy Land. Our analysis showed that during 1961-2010 the annual precipitation fluctuated dramatically and has decreased fairly consistently in recent years. The air temperature increased by 0.50-1.25℃, and the minimum temperature increased more obviously. The desertified land area increased from 42,300 km^2 in 1959 to 62,000 km^2 in 1985, and then declined to about 50,000 km^2 in 2010. The underground water tables have been lowered by about 10 m in the past 30 years, and declined more rapidly in recent years. Desertified land is significantly related to the amount of total cropland, and underground water tables are signifcantly correlated with annual precipitation and the amount of irrigated cropland. Therefore, it is necessary to pursue sustainable desertification reversion without compromising the capacity for local development and restoration of degraded land, through application of appropriate management measures for improving water availability in this region.展开更多
Root distribution plays an important role in both vegetation establishment and restoration of degraded land through in-fluencing soil property and vegetation growth. Root distribution at 0-60 cm depth of A. halodendro...Root distribution plays an important role in both vegetation establishment and restoration of degraded land through in-fluencing soil property and vegetation growth. Root distribution at 0-60 cm depth of A. halodendron was investigated in Horqin Sandy Land. Soil organic carbon (SOC) and nitrogen (SN) concentration as well as carbon and nitrogen in root biomass and necromass were measured. Root length density (RLD) was estimated. Total root biomass, necromass and the RLD at 0-60 cm depth was 172 g/m^2, 245 g/m^2, and 368 m/m^2, respectively. Both biomass and necromass of A. halodendron roots decreased with soil depth, live roots were mainly at 0-20 cm (76% of biomass and 63% of root length), while 73% of the necromass was within 0-30 cm depth. N concentration of roots (biomass and necromass) was about 1.0% and 1.5%, respectively. There were significant differences in SOC concentration between soil layers, but insignificant for SN. Soil C/N ratio decreased with depth (P〈0.05). C and N storage for belowground system at 0-60 cm decreased markedly with depth; 41.4% of C and 31.7% of N were allocated to the 0-10 cm layer. Root bio- and necromass together contained similar amount of C to that of the soil itself in the top layer. N stock was dominated by soil nitrogen at all depths, but more so in deeper layers. It is clear that differentiating between soil layers will aid in interpreting A. halodendron efficiency in soil restoration in sandy land.展开更多
The Horqin Sandy Land of northeastern China was originally a grassland with plenty of water and lush vegetation dominated by palatable grass species along with sparsely scattered woody species. However, it has experie...The Horqin Sandy Land of northeastern China was originally a grassland with plenty of water and lush vegetation dominated by palatable grass species along with sparsely scattered woody species. However, it has experienced severe desertification in recent decades due to its fragile ecology together with inappropriate human activities. Currently, the landscape of the Horqin Sandy Land is dominated by irrigated croplands and sand dunes with different degrees of vegetation cover, as the region has become the most important part of the semiarid agro-pastoral ecotone of northern China. In this study, we compared soil physical and chemical properties under different land-use and cover types (irrigated cropland, rainfed cropland, sandy grassland, fixed dunes, and mobile dunes). We found that soil particle size distribution; organic C, total N, and total mineral element, microelement, and available microelement and nutrient contents; pH; CEC; and bulk density differed significantly among the land-use and cover types. In general, soil quality was highest in the cropland, intermediate in the sandy grassland, and lowest in the dunes. The most important soil quality attribute, soil organic carbon (SOC) storage, decreased in the fol-lowing order: irrigated cropland (5,699 g/m^2) 〉 sandy grassland (3,390 g/m^2) 〉 rainfed cropland (2,411 g/m^2) 〉 fixed dunes (821 g/m^2) 〉 mobile dunes (463 g/m^2). SOC was significantly positively correlated with a large proportion of the other soil physico-chemical parameters. Our results suggest that the key issue in restoration of the degraded soils will be to increase SOC storage, which would also create a high potential for sequestering soil C in desertified areas of the Horqin Sandy Land.展开更多
Optimal partitioning theory (OPT) suggests that plants should allocate relatively more biomass to the organs that acquire the most limited resources. The assumption of this theory is that plants trade off the biomas...Optimal partitioning theory (OPT) suggests that plants should allocate relatively more biomass to the organs that acquire the most limited resources. The assumption of this theory is that plants trade off the biomass allocation between leaves, stems and roots. However, variations in biomass allocation among plant parts can also occur as a plant grows in size. As an alternative approach, allometric biomass partitioning theory (APT) asserts that plants should trade off their biomass between roots, stems and leaves. This approach can minimize bias when comparing biomass allocation patterns by accounting for plant size in the analysis. We analyzed the biomass allo- cation strategy of perennial Pennisetum centrasiaticum Tzvel in the Horqin Sand Land of northern China by treating samples with different availabilities of soil nutrients and water, adding snow in winter and water in summer. We hypothesized that P. centrasiaticum alters its pattern of biomass allocation strategy in response to different levels of soil water content and soil nitrogen content. We used standardized major axis (SMA) to analyze the allometric rela- tionship (slope) and intercept between biomass traits (root, stem, leaf and total biomass) of nitrogen/water treat- ments. Taking plant size into consideration, no allometric relationships between different organs were significantly affected by differing soil water and soil nitrogen levels, while the biomass allocation strategy of P. centrasiaticum was affected by soil water levels, but not by soil nitrogen levels. The plasticity of roots, leaves and root/shoot ratios was 'true' in response to fluctuations in soil water content, but the plasticity of stems was consistent for trade-offs between the effects of water and plant size. Plants allocated relatively more biomass to roots and less to leaves when snow was added in winter. A similar trend was observed when water was added in summer. The plasticity of roots, stems and leaves was a function of plant size, and remained unchanged in response to different soil nitrogen levels.展开更多
In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simo...In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simonii Carri6re (PSC) mature forests were se- lected in Horqin Sandy Land, and mobile dunes was set as a control (CK). Results show that PSM and PSC plantations can im- prove soil physicochemical properties and significantly increase microbiological activity in mobile dunes. Soil microbial abun- dance, microbial biomass carbon and enzyme activity show an order of PS〉PSM〉CK. Total soil microbial abundance in PSM and PSC was respectively 50.16 and 72.48 times more than that in CK, and the differences were significant among PSM, PSC and CK Soil microbial biomass carbon in PSM and PSC was respectively 23.67 and 33.34 times more than that in CK, and the difference was insignificant between PSM and PSC. Soil enzyme activity, including dehydrogenase (DEH), peroxidase (PER), protease (PRO), urease (URE) and cellobiohydrolase (CEL) in PSM and PSC were respectively 19.00 and 27.54, 4.78 and 9.89, 4.05 and 8.67, 29.93 and 37.46, and 9.66 and 13.42 times of that in CK. R sylvestris and P. simonii can effectively improve soil physico- chemical and microbiological properties in sandy dunes and fix mobile dunes in Horqin Sandy Land. The Cmic:C ratio is an appli- cable indicator to estimate soil stability and soil water availability, and based on an overall consideration of plantation stability and sustainability, R sylvestris is better than R simonii in fixing mobile dunes in sandy land.展开更多
China's Horqin Sandy Land,a formerly lush grassland,has experienced extensive desertification that caused considerable carbon(C) losses from the plant-soil system.Natural restoration through grazing exclusion is a ...China's Horqin Sandy Land,a formerly lush grassland,has experienced extensive desertification that caused considerable carbon(C) losses from the plant-soil system.Natural restoration through grazing exclusion is a widely suggested option to sequester C and to restore degraded land.In a desertified grassland,we investigated the C accumulation in the total and light fractions of the soil organic matter from 2005 to 2013 during natural restoration.To a depth of 20 cm,the light fraction organic carbon(LFOC) storage increased by 221 g C/m2(84%) and the total soil organic carbon(SOC) storage increased by 435 g C/m2(55%).The light fraction dry matter content represented a small proportion of the total soil mass(ranging from 0.74% in 2005 to 1.39% in 2013),but the proportion of total SOC storage accounted for by LFOC was remarkable(ranging from 33% to 40%).The C sequestration averaged 28 g C/(m2·a) for LFOC and 54 g C/(m2·a) for total SOC.The total SOC was strongly and significantly positively linearly related to the light fraction dry matter content and the proportions of fine sand and silt+clay.The light fraction organic matter played a major role in total SOC sequestration.Our results suggest that grazing exclusion can restore desertified grassland and has a high potential for sequestering SOC in the semiarid Horqin Sandy Land.展开更多
Aeolian desertification has rapidly developed in the past 50 years in Northern China,covered an area of 0.386 million km2 by 2000,affected nearly 170 million population,and caused the direct and indirect economic loss...Aeolian desertification has rapidly developed in the past 50 years in Northern China,covered an area of 0.386 million km2 by 2000,affected nearly 170 million population,and caused the direct and indirect economic loss of about $6.75(U.S.dollar) billion per year.Here we present several lines of evidence to demonstrate that human activities guided by policy shifts have been a major force to drive aeolian desertification via changes in land-use patterns and intensity.It is suggested that the desertification can be curbed or even reversed by adopting prevention and control measures with ecologically sound land-use practices in China.展开更多
By viewing satellite imagery, a striking large-scale dunefield can be clearly perceived, with a size of nearly 63 km long and 11 km wide, and trending NE-SW, on the right flank of the lower Laoha River, Northeast Chin...By viewing satellite imagery, a striking large-scale dunefield can be clearly perceived, with a size of nearly 63 km long and 11 km wide, and trending NE-SW, on the right flank of the lower Laoha River, Northeast China. By means of remote sensing imagery analysis and field observation as well as a comparison with a small-scale dunefield on the right flank of the lower Xiangshui River, analogous to the case of the lower Laoha River, this paper presents a new mechanism for its origin and development. The results show that: (1) the large-scale dunefield bears a tile-style framework overwhelmingly composed of transverse barchanoid ridges perpendicular to the predominant winds, and inlaid diverse blowouts. (2) The small-scale dunefield, referred to as a primary structural unit of the large one, is typical of an incipient dunefield, following the same rules of evolution as the larger. (3) A succession of barchanoid ridge chains can steadily migrate downwind in much the same manner as surface wave propagation in air or water stimulated by an incised valley, and ultimately tend to bear roughly the same wavelength and amplitude under stable climate and hydrologic regimes. (4) The first ridge chain acquires its sand source substantially from the downwind escarpments exposing the loose Quaternary sandy sediments to the air, while the ensuing ridges derive their sands dominantly from in situ deflation of the underlain Quaternary loose sandy sediments in blowouts, partly from the upwind ridges through northern elongated horns. Theoretically, the sands from riparian escarpments can be transported by wind to the downwind distal end of a dunefield after sufficient long du- ration. (5) The lower Laohahe region experienced probably three significant climatic changes in the past, corresponding to the three active dune belts, suggesting that once a large-scale dunefield occurs, it is nearly impossible to be completely stabilized, at least in its central portions. At present, seasonal shrinkage and stagnation of the lower Laoha River, wide-spread farming and afforestation in the valley, and establishing windbreaks downwind of the valley as well as surrounding the dunefield, appear to have significantly modified local flow fields and sand sources, engendering significant degradation of the dunefield.展开更多
How species diversityroductivity relationships respond to temporal dynamics and land use is still not clear in semi-arid grassland ecosystems. We analyzed seasonal changes of the relationships between vegetation cover...How species diversityroductivity relationships respond to temporal dynamics and land use is still not clear in semi-arid grassland ecosystems. We analyzed seasonal changes of the relationships between vegetation cover, plant density, species richness, and above- ground biomass in grasslands under grazing and exclosure in the Horqin Sandy Land of northem China. Our results showed that in grazed and fenced grassland, vegetation cover, richness, and biomass were lower in April than in August, whereas plant density showed a reverse trend. Vegetation cover during the growing season and biomass in June and August were higher in fenced grassland than in grazed grassland, whereas plant density in April and June was lower in fenced grassland than in grazed grassland. A negative relationship between species richness and biomass was found in August in fenced grassland, and in grazed grassland the relationship between plant density and biomass changed from positive in April to negative in August. The relationship between the density of the dominant plant species and the total biomass also varied with seasonal changes and land use (grazing and exclosure). These results suggest that long-term grazing, seasonal changes, and their interaction significantly influence vegetation cover, plant density, and bio- mass in grasslands. Plant species competition in fenced grassland results in seasonal changes of the relationship between species rich- ness and biomass. Long-term grazing also affects seasonal changes of the density and biomass of dominant plant species, which fur- tiler affects the seasonal relationship between plant density and biomass in grasslands. Our study demonstrates the importance of tem- poral dynamics and land use in understanding the relationship between species richness and ecosystem fianction.展开更多
It is well known that the Hetao Basin is one of the most seriously arsenic-affected groundwater areas in China. In order to understand the characteristics of high arsenic (As) groundwater in the Basin, a brief overv...It is well known that the Hetao Basin is one of the most seriously arsenic-affected groundwater areas in China. In order to understand the characteristics of high arsenic (As) groundwater in the Basin, a brief overview of arsenic in groundwater follows. High arsenic in the Basin commonly occurs in shallow groundwater and the total arsenic concentrations range from 0.58 to 572 μg/L (average 99.73 μg/L), exceeding the maximum mandated value of 10 μg/L for drinking water in China; As(III) is the predominant species. The regional distribution pattern of arsenic in the groundwater increases from south/southeast to north/northwest. Hangjinhouqi and Wuyuan counties are considered as the most seriously affected areas, with high incidences of endemic arsenicosie diseases in the Hetao Basin. High groundwater arsenic correlates with the increase of well depth. Previous studies proposed that groundwater arsenic in the Basin is mainly originated from desorption of some natural solid materials in the sediments, under reducing condition. Generally, reducing condition is believed to be the primary factor for arsenic releasing from the sediment to groundwater in the region. Under inorganic Or bacterial processes, Fe2O3 changes to FeS and arsenic adsorbed to Fe(OH)3 dissolves into groundwater, and As(V) is re- duced to As(W). Besides, reducing environments, groundwater hydraulic gradients, organic matter, pH, evapotranspiration, and soil texture are presumed to be the predominant factors that control arsenic mobilization.展开更多
Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. O...Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.展开更多
The ability of psammophyte photosynthesis to withstand and recover from severe droughts is crucial for vegetation sta- bility in semi-arid sandy lands. The responses of gas exchange and chlorophyll fluorescence of an ...The ability of psammophyte photosynthesis to withstand and recover from severe droughts is crucial for vegetation sta- bility in semi-arid sandy lands. The responses of gas exchange and chlorophyll fluorescence of an annual grass, Digitaria ciliaris, were measured through three soil drought and rewatering cycles. Results showed that the net photosynthesis rate (P,) decreased by 92%, 95%, and 63% at end of the three drought periods, respectively, water use efficiency (WUE) decreased by 67%, 54%, and 48%, while the constant intercellular CO2 concentration (Ci) increased by 1.08, 0.88, and 0.45 times. During those three cycles, the trapping probability with no dark adaptation (Fv'/Fm') decreased by 55%, 51%, and 9%, the electron transport per cross section (ET0'/CS0') decreased by 63%0, 42%, and 18%, and the dissipation per cross section (DI0'/CS0') increased by 97%, 96%, and 21%. These results indicated that D. ciliaris was subjected to photoinhi- bition and some non-stomatal limitation of photosynthesis under drought. However, after four days of rewatering, its photosynthetic characteristics were restored to control values. This capability to recover from drought may contribute to making the plant's use of water as efficient as possible. Furthermore, the photosynthesis decreased more slowly in the subsequent drought cycles than in the first cycle, allowing D. ciliaris to enhance its future drought tolerance after drought hardening. Thus, it acclimatizes itself to repeated soil drought.展开更多
The genetic diversity of Artemisia halodendron(Asteraceae), a constructive and dominant species in Horqin Sandy Land,was investigated to examine the genetic relationships with different hydrothermal regions in Horqin ...The genetic diversity of Artemisia halodendron(Asteraceae), a constructive and dominant species in Horqin Sandy Land,was investigated to examine the genetic relationships with different hydrothermal regions in Horqin Sandy Land. We sequenced chloroplast DNA(cp DNA) fragments(trn L–F) of 243 plants from 10 populations across the Horqin Sandy Land.The analyses of cp DNA variation identified seven haplotypes. A low level of haplotype diversity(H_d=0.706) and nucleotide diversity(π=0.0013) was detected. Haplotypes clustered into two tentative clades. Low genetic differentiation among regions was consistently indicated by hierarchical analyses of molecular variance(AMOVA). Across the sampled populations, the haplotype distributions were differentiated with hydrothermal gradients.展开更多
As a linkage between plants and soil,litter decomposition and its effect on nutrient recirculation have an important ecolog‐ical significance as they contribute to soil structure improvement and the restoration of de...As a linkage between plants and soil,litter decomposition and its effect on nutrient recirculation have an important ecolog‐ical significance as they contribute to soil structure improvement and the restoration of degraded ecosystems.Fragile eco‐systems in arid regions(both hot and cold)are depleted in soil organic matter,and as a result of various factors their circu‐lation of material and energy is slower.Here we discuss how litter decomposition is necessary to maintain the stability of fragile ecosystems.We reviewed research on litter decomposition carried out in arid regions.Our objective in this review is to outline how litter decomposition,and the subsequent buildup of organic matter in soil,is a key process determining the stability of fragile ecosystems.Our review shows that existing studies have focused on the influence of single ecologi‐cal factors on litter decomposition and nutrient cycling,and highlights how the exploration of interactions among factors determining litter decomposition is still lacking.This interaction is a key aspect,since in the real world,decomposition and nutrient return to soil of litter products is affected by multiple factors.We propose a network setup on a cross-regional scale using standardized methods(e.g.,the tea bag method)to understand litter decomposition and nutrient return in frag‐ile ecosystems.Such a unique network could contribute to establish predictive models suitable for litter decomposition and nutrient return in these areas,and thus could provide theoretical and practical support for regional ecological protec‐tion and high-quality development.展开更多
基金supported by the National Natural Science Foundation of China(No.32260292,32060277)National Key Research and Development Program of China(No.2020YFC1522200)+2 种基金Shanxi Provincial Basic Research Program of China(No.202303021212060)Shanxi Provincial Cultural Relics Technology Program of China(No.2023KT15)The Local Project Guided by the Central Government of Gansu Province(No.YDZX20216200001728).
文摘Biological soil crusts(BSCs)play an important role in soil development and ecological function,and it is more important for quantitatively analyzing the processes and trends of BSCs to identify the advantages and disadvantages of BSCs research for the development and application of BSCs theory.Bibliometric analysis of 2,186 BSCs literatures from Web of Science showed an exponential growth trend,as China and the United States as the top 2 in terms of publication volume.High quality publications are mainly from European and American countries,such as the United States,Germany and Spain.The top 3 publishers are Journal of Arid Environments,Soil Biology&Biochemistry and Plant and Soil,and disciplines include ecology,environmental science,and soil science,etc..Research institutions mainly affiliate to the Chinese Academy of Sciences,United States Department of the Interior,United States Geological Survey,Hebrew University of Jerusalem,Consejo Superior de Investigaciones Cientificas,and Universidad Rey Juan Carlos.Authors mainly come from United States,Israel,Spain and China.Funds are mainly from the National Natural Science Foundation of China,Spanish Government,Chinese Academy of Sciences,and National Science Foundation of the United States.Biological soil crusts(biocrusts,cyanobacteria,lichens,moss crusts,bryophytes),drylands,climate change,photosynthesis and desert are high-frequency keywords.Future research will focus on the driving mechanisms of BSCs on global biogeochemical cycles,maintaining global biodiversity on important ecological processes,global C,N,and P cycles.The impact on biological invasion,sandstorms,and water balance,multifunctional and reciprocal mechanisms for maintaining the stability of desert and sandy ecosystems,and impact on the formulation of management policies for arid ecosystems,corresponding to global climate change,and the estimation of regional,local,and microscale distribution of BSCs based on machine deep learning modeling gradually focus on.The ecosystem service functions of BSCs,the soil and water conservation and soil stability mediated by BSCs in arid and semi-arid regions,and the excavation of stress resistant genes for BSCs will be emphasized.
基金financially supported by the National Natural Science Foundation of China (41171414)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-QN313)+1 种基金the Chinese Academy of Sciences Visiting Professorships for Senior International Scientists (2011T2Z36)the Key Project of Scientific and Technical Supporting Programs (2011BAC07B02-09), and the National Basic Research Program of China (2009CB421303)
文摘Ecological patterns and processes in dune ecosystems have been a research focus in recent years, however the information on how dune stabilization influences the spatial scale dependence of plant diversity is still lacking. In this study, we measured the plant species richness, soil properties and altitude across four spatial scales (1, 10, 100 and 1,000 m2) at three different dune stabilization stages (mobile dune, semi-fixed dune and fixed dune) in Horqin Sandy Land, Northern China. We also examined the relationships between plant species richness, community composition and environmental factors along the gradient of dune stabilization. Our results showed that plant species richness increased with the increase of spatial scales in each dune stabilization stage, as well as with the increase of dune stabilization degrees. Canonical correspondence analysis (CCA) showed that plant distribu- tions in the processes of dune stabilization were determined by the combined environmental gradient in relation to soil organic carbon (SOC), total nitrogen (TN), carbon/nitrogen (C/N), pH, electrical conductivity (EC), soil water content (SWC), fine sand (FS), very fine sand (VFS), silt and clay (SC), and altitude. Plant species richness was significantly and positively correlated to SOC and TN in mobile dune, and significantly and positively correlated to SOC, TN, C/N, VFS and SC in semi-fixed dune. However, no significant correlation between plant species richness and environmental factors was observed in fixed dune. In addition, plant species richness in different dune stabili- zation stages was also determined by the combined gradient of soil properties and altitude. These results suggest that plant species richness has obvious scale dependence along the gradient of dune stabilization. Soil resources depending on dune habitats and environmental gradients caused by dune stabilization are important factors to de- termine the scale dependence of species diversity in sand dune ecosystems.
基金financially supported by the National Natural Science Foundation of China (41071185, 31170413)the National Basic Research Program of China (2011BAC07B02)Chinese Academy of Sciences has kindly granted Prof. Olof ANDRéN a ‘Professorship for Senior International Scientists’(Y229D91001)
文摘Plant root exudates contain various organic and inorganic components that include glucose, citric and oxalic acid. These components affect rhizosphere microbial and microfaunal activities, but the mechanisms are not fully known. Studies concerned from degraded grassland ecosystems with low soil carbon(C) contents are rare, in spite of the global distribution of grasslands in need of restoration. All these have a high potential for carbon sequestration, with a reduced carbon content due to overutilization. An exudate component that rapidly decomposes will increase soil respiration and CO2 emission, while a component that reduces decomposition of native soil carbon can reduce CO2 emission and actually help sequestering carbon in soil. Therefore, to investigate root exudate effects on rhizosphere activity, citric acid, glucose and oxalic acid(0.6 g C/kg dry soil) were added to soils from three biotopes(grassland, fixed dune and mobile dune) located in Naiman, Horqin Sandy Land, Inner Mongolia, China) and subjected to a 24-day incubation experiment together with a control. The soils were also analyzed for general soil properties. The results show that total respiration without exudate addition was highest in grassland soil, intermediate in fixed dune and lowest in mobile dune soil. However, the proportion of native soil carbon mineralized was highest in mobile dune soil, reflecting the low C/N ratio found there. The exudate effects on CO2-C emissions and other variables differed somewhat between biotopes, but total respiration(including that from the added substrates) was significantly increased in all combinations compared with the control, except for oxalic acid addition to mobile dune soil, which reduced CO2-C emissions from native soil carbon. A small but statistically significant increase in pH by the exudate additions in grassland and fixed dune soil was observed, but there was a major decrease from acid additions to mobile dune soil. In contrast, electrical conductivity decreased in grassland and fixed dune soil and increased in mobile dune. Thus, discrete components of root exudates affected soil environmental conditions differently, and responses to root exudates in soils with low carbon contents can differ from those in normal soils. The results indicate a potential for, e.g., acid root exudates to decrease decomposition rate of soil organic matter in low carbon soils, which is of interest for both soil restoration and carbon sequestration.
基金National Key Technology R&D Program (Y113911001)Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050406)National Natural Science Foundation of China (31270501, 30970471)
文摘Nutrient resorption is an important conservation mechanism for plants to overcome nutrient limitation in the less fertile area of desertifled land. In the semi-arid Horqin Sandy Land of Northern China, the shrub Artemisia ha/odendron usually colonizes into the bare ground of severely desertified land as a pioneer species. It is, therefore, expected that A. ha/odendron will be less dependent on current nutrient uptake through efficient and proficient re- sorption of nutrients. In this study, we found that averaged nitrogen (N) and phosphorus (P) concentrations in se- nesced leaves significantly varied from 12.3 and 1.2 mg/g in the shifting sand dune to 15.9 and 1.9 mg/g in the fixed sand dune, respectively, suggesting that foliar N and P resorption of A. ha/odendron were more proficient in the shifting sand dune. In particular, positive relationships between nutrient concentrations in senesced leaves and soil nutrient availability indicate that A. ha/odendron in infertile habitats is more likely to manage with a low level of nu- trients in senesced leaves, giving this species an advantage in infertile soil. Moreover, foliar N- and P-resorption efficiencies and proficiencies showed limited inter-annual variability although annual precipitation varied greatly among 2007-2009. However, N and P resorption of A. ha/oc/endron were not more efficient and proficient than those previously reported for other shrubs, indicating that the pioneer shrub in sand dune environments does not rely more heavily than other plants on the process of resorption to conserve nutrients. Incomplete resorption of nutrients in A. halodendron suggests that senesced-leaf fall would return litter with high quality to the soil, and thereby would indirectly improve soil nutrient availability. The restoration of desertified land, therefore, may be ac- celerated after A. halodendron pioneers into shifting sand dunes.
基金funded by the National Natural Science Foundation of China(41171414)the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-EW-QN313)+2 种基金the National Science and Technology Support Program (2011BAC07B02)the National Basic Research Program of China(2009CB421303)the West Light Foundation of the Chinese Academy of Sciences(0928711001)
文摘Soil seed banks play an important role in the distribution and composition of plant communities in semiarid grassland ecosystems. However, information on how spatial scale influences the spatial heterogeneity of soil seed banks in a grassland under grazing disturbance is still lacking. Based on field sampling and greenhouse germination, we measured the species composition and seed density of soil seed banks at different spatial scales (30 mx30 m, 30 mx60 m and 30 mx90 m) along a topographical gradient in a sandy grassland in Horqin Sand Land, Northern China. By applying geostatistical methods, we examined how spatial scale and topography affected the spatial distribution of soil seed banks in the study area. Our results showed that the total number of species in soil seed banks, as well as the number of dominant annuals, increased with the increase of spatial scales. Seed density in soil seed banks decreased with the increase of spatial scales due to an increase in the slopes and relative heights of the sampling points. Geostatistical analysis showed that the relative structural variance (C/(C0+C)) of seed density and species richness were over 65% for all spatial scales, indicating that these variables had an ob- vious spatial autocorrelation and the spatial structured variance accounted for the largest proportion of the total sample variance. Spatial autocorrelation of seed density in soil seed banks increased with the increase of measured scales, while that of species richness showed a reverse trend. These results suggest that the total number of spe- cies in soil seed banks is spatial scale dependent and lower topography may accommodate more seeds. Spatial distribution of seed density in soil seed banks is also scale dependent due to topographic variation. Grassland management, therefore, needs to consider local grazing disturbance regime, spatial scale and topography.
基金funded by the National Natural Science Foundation of China (41071185,41171414)the National Science and Technology Support Program (2011BAC07B02)
文摘Land cover change plays an essential role in the alternation of soils properties. By field investigation and applying satellite images, land cover information in the Shelihu wetland was carried out in an area of 2,819 hm2 in 1985, 1995, 2000, 2005, 2010 and 2011, respectively, in Horqin Sandy Land. A total of 57 soil sampling sites across Shelihu were chosen in wet meadow (CL0), cropland (CL) and sandy land (SL) according to the spatial characteristics of water body change. Soil texture, organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) contents, electrical conductivity (EC) and pH were measured at the soil depths of 0-10, 10-20 and 20-40 cm to examine the influence of agricultural conversion and continuous cultivation on soil properties. The results showed that the study area was covered by water body in 1985, which gradually declined afterwards and then reclaimed rapidly at a mean annual rate of 132.1 hm2/a from wet meadow to cropland since 1995. In 2011, water body was drained and the area was occupied by 10.8% of CL0, 76.9% of CL and 12.3% of SL. Large amounts of SOC, TN and TP were accumulated in the above depths in CL0. Soil in CL0 also had higher EC and silt and clay fractions, lower pH than in SL and CL. Soil in SL was seriously degraded with lower contents of SOC, TN and TP than in CL and CL0. SOC, TN content and EC in CL decreased with the increase of cultivation age, while pH showed a reverse trend with significance at plough horizon. The agricultural conversion in Shelihu was driven by the comprehensive factors of precipitation reduction, economic development and intense competitions for irrigation water. Continuous cultivation in this process is not sustainable because of SOC degradation and nutrient content reduction. The key point is that conventional tillage and removal of residuals induced further land degradation. Wetland reclamation for immediate economic interests led to greater costs in the long-term environmental restoration in Horqin Sandy Land.
基金funded by the National Pivotal Project,Nos.2011BAC07B02 and 201109025(2)NSFC Project No.41071185
文摘Desertification reversion is an interactive process involving climate, land use change, and water processes. In order to reveal the relationship between desertification reversion and these factors, we analyzed historical data on precipitation, air temperature, desertified land changes, underground water tables, and water body changes in Naiman County in the central part of Horqin Sandy Land. Our analysis showed that during 1961-2010 the annual precipitation fluctuated dramatically and has decreased fairly consistently in recent years. The air temperature increased by 0.50-1.25℃, and the minimum temperature increased more obviously. The desertified land area increased from 42,300 km^2 in 1959 to 62,000 km^2 in 1985, and then declined to about 50,000 km^2 in 2010. The underground water tables have been lowered by about 10 m in the past 30 years, and declined more rapidly in recent years. Desertified land is significantly related to the amount of total cropland, and underground water tables are signifcantly correlated with annual precipitation and the amount of irrigated cropland. Therefore, it is necessary to pursue sustainable desertification reversion without compromising the capacity for local development and restoration of degraded land, through application of appropriate management measures for improving water availability in this region.
基金financially supported by the National Nature Science Foundation of China (No. 31500369)the "One Hundred Talent" Program (Y551821001 and Y451H31001) of Chinese Academy of Sciences
文摘Root distribution plays an important role in both vegetation establishment and restoration of degraded land through in-fluencing soil property and vegetation growth. Root distribution at 0-60 cm depth of A. halodendron was investigated in Horqin Sandy Land. Soil organic carbon (SOC) and nitrogen (SN) concentration as well as carbon and nitrogen in root biomass and necromass were measured. Root length density (RLD) was estimated. Total root biomass, necromass and the RLD at 0-60 cm depth was 172 g/m^2, 245 g/m^2, and 368 m/m^2, respectively. Both biomass and necromass of A. halodendron roots decreased with soil depth, live roots were mainly at 0-20 cm (76% of biomass and 63% of root length), while 73% of the necromass was within 0-30 cm depth. N concentration of roots (biomass and necromass) was about 1.0% and 1.5%, respectively. There were significant differences in SOC concentration between soil layers, but insignificant for SN. Soil C/N ratio decreased with depth (P〈0.05). C and N storage for belowground system at 0-60 cm decreased markedly with depth; 41.4% of C and 31.7% of N were allocated to the 0-10 cm layer. Root bio- and necromass together contained similar amount of C to that of the soil itself in the top layer. N stock was dominated by soil nitrogen at all depths, but more so in deeper layers. It is clear that differentiating between soil layers will aid in interpreting A. halodendron efficiency in soil restoration in sandy land.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41271007, 31260089, and 31560161)the One Hundred Person Project of the Chinese Academy of Sciences (Y551821002)
文摘The Horqin Sandy Land of northeastern China was originally a grassland with plenty of water and lush vegetation dominated by palatable grass species along with sparsely scattered woody species. However, it has experienced severe desertification in recent decades due to its fragile ecology together with inappropriate human activities. Currently, the landscape of the Horqin Sandy Land is dominated by irrigated croplands and sand dunes with different degrees of vegetation cover, as the region has become the most important part of the semiarid agro-pastoral ecotone of northern China. In this study, we compared soil physical and chemical properties under different land-use and cover types (irrigated cropland, rainfed cropland, sandy grassland, fixed dunes, and mobile dunes). We found that soil particle size distribution; organic C, total N, and total mineral element, microelement, and available microelement and nutrient contents; pH; CEC; and bulk density differed significantly among the land-use and cover types. In general, soil quality was highest in the cropland, intermediate in the sandy grassland, and lowest in the dunes. The most important soil quality attribute, soil organic carbon (SOC) storage, decreased in the fol-lowing order: irrigated cropland (5,699 g/m^2) 〉 sandy grassland (3,390 g/m^2) 〉 rainfed cropland (2,411 g/m^2) 〉 fixed dunes (821 g/m^2) 〉 mobile dunes (463 g/m^2). SOC was significantly positively correlated with a large proportion of the other soil physico-chemical parameters. Our results suggest that the key issue in restoration of the degraded soils will be to increase SOC storage, which would also create a high potential for sequestering soil C in desertified areas of the Horqin Sandy Land.
基金funded by grants from the National Basic Research Program of China(2009CB421303)the National Science&Technology Pillar Program(2011BAC07B02)the National Natural Science Foundation of China(40871004)
文摘Optimal partitioning theory (OPT) suggests that plants should allocate relatively more biomass to the organs that acquire the most limited resources. The assumption of this theory is that plants trade off the biomass allocation between leaves, stems and roots. However, variations in biomass allocation among plant parts can also occur as a plant grows in size. As an alternative approach, allometric biomass partitioning theory (APT) asserts that plants should trade off their biomass between roots, stems and leaves. This approach can minimize bias when comparing biomass allocation patterns by accounting for plant size in the analysis. We analyzed the biomass allo- cation strategy of perennial Pennisetum centrasiaticum Tzvel in the Horqin Sand Land of northern China by treating samples with different availabilities of soil nutrients and water, adding snow in winter and water in summer. We hypothesized that P. centrasiaticum alters its pattern of biomass allocation strategy in response to different levels of soil water content and soil nitrogen content. We used standardized major axis (SMA) to analyze the allometric rela- tionship (slope) and intercept between biomass traits (root, stem, leaf and total biomass) of nitrogen/water treat- ments. Taking plant size into consideration, no allometric relationships between different organs were significantly affected by differing soil water and soil nitrogen levels, while the biomass allocation strategy of P. centrasiaticum was affected by soil water levels, but not by soil nitrogen levels. The plasticity of roots, leaves and root/shoot ratios was 'true' in response to fluctuations in soil water content, but the plasticity of stems was consistent for trade-offs between the effects of water and plant size. Plants allocated relatively more biomass to roots and less to leaves when snow was added in winter. A similar trend was observed when water was added in summer. The plasticity of roots, stems and leaves was a function of plant size, and remained unchanged in response to different soil nitrogen levels.
基金supported by the National Science and Technology Support Program(2011BAC07B02)Young Scientists Foundation of Chinese Academy of Sciences(CAS)(Y251951001)National Natural Science Foundation of China(41171414and31170413) from Coldand Arid Regions Environmental and Engineering Research Institute,CAS
文摘In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simonii Carri6re (PSC) mature forests were se- lected in Horqin Sandy Land, and mobile dunes was set as a control (CK). Results show that PSM and PSC plantations can im- prove soil physicochemical properties and significantly increase microbiological activity in mobile dunes. Soil microbial abun- dance, microbial biomass carbon and enzyme activity show an order of PS〉PSM〉CK. Total soil microbial abundance in PSM and PSC was respectively 50.16 and 72.48 times more than that in CK, and the differences were significant among PSM, PSC and CK Soil microbial biomass carbon in PSM and PSC was respectively 23.67 and 33.34 times more than that in CK, and the difference was insignificant between PSM and PSC. Soil enzyme activity, including dehydrogenase (DEH), peroxidase (PER), protease (PRO), urease (URE) and cellobiohydrolase (CEL) in PSM and PSC were respectively 19.00 and 27.54, 4.78 and 9.89, 4.05 and 8.67, 29.93 and 37.46, and 9.66 and 13.42 times of that in CK. R sylvestris and P. simonii can effectively improve soil physico- chemical and microbiological properties in sandy dunes and fix mobile dunes in Horqin Sandy Land. The Cmic:C ratio is an appli- cable indicator to estimate soil stability and soil water availability, and based on an overall consideration of plantation stability and sustainability, R sylvestris is better than R simonii in fixing mobile dunes in sandy land.
基金supported by the National Natural Science Foundation of China (41271007,31170413)the National Science and Technology Support Program of China (2011BAC07B02)
文摘China's Horqin Sandy Land,a formerly lush grassland,has experienced extensive desertification that caused considerable carbon(C) losses from the plant-soil system.Natural restoration through grazing exclusion is a widely suggested option to sequester C and to restore degraded land.In a desertified grassland,we investigated the C accumulation in the total and light fractions of the soil organic matter from 2005 to 2013 during natural restoration.To a depth of 20 cm,the light fraction organic carbon(LFOC) storage increased by 221 g C/m2(84%) and the total soil organic carbon(SOC) storage increased by 435 g C/m2(55%).The light fraction dry matter content represented a small proportion of the total soil mass(ranging from 0.74% in 2005 to 1.39% in 2013),but the proportion of total SOC storage accounted for by LFOC was remarkable(ranging from 33% to 40%).The C sequestration averaged 28 g C/(m2·a) for LFOC and 54 g C/(m2·a) for total SOC.The total SOC was strongly and significantly positively linearly related to the light fraction dry matter content and the proportions of fine sand and silt+clay.The light fraction organic matter played a major role in total SOC sequestration.Our results suggest that grazing exclusion can restore desertified grassland and has a high potential for sequestering SOC in the semiarid Horqin Sandy Land.
基金supported by the National Basic Research Program of China (No. 2009CB421300): "The Processes of Oasifica-tion-Desertification and their Responding to Human Activities & Climatic Change and their Regulation in the Arid Region of China"
文摘Aeolian desertification has rapidly developed in the past 50 years in Northern China,covered an area of 0.386 million km2 by 2000,affected nearly 170 million population,and caused the direct and indirect economic loss of about $6.75(U.S.dollar) billion per year.Here we present several lines of evidence to demonstrate that human activities guided by policy shifts have been a major force to drive aeolian desertification via changes in land-use patterns and intensity.It is suggested that the desertification can be curbed or even reversed by adopting prevention and control measures with ecologically sound land-use practices in China.
基金funded by NSFC(Grant No.41271025)the Construct Program of the Key Discipline in Hunan Province,China (2012001)
文摘By viewing satellite imagery, a striking large-scale dunefield can be clearly perceived, with a size of nearly 63 km long and 11 km wide, and trending NE-SW, on the right flank of the lower Laoha River, Northeast China. By means of remote sensing imagery analysis and field observation as well as a comparison with a small-scale dunefield on the right flank of the lower Xiangshui River, analogous to the case of the lower Laoha River, this paper presents a new mechanism for its origin and development. The results show that: (1) the large-scale dunefield bears a tile-style framework overwhelmingly composed of transverse barchanoid ridges perpendicular to the predominant winds, and inlaid diverse blowouts. (2) The small-scale dunefield, referred to as a primary structural unit of the large one, is typical of an incipient dunefield, following the same rules of evolution as the larger. (3) A succession of barchanoid ridge chains can steadily migrate downwind in much the same manner as surface wave propagation in air or water stimulated by an incised valley, and ultimately tend to bear roughly the same wavelength and amplitude under stable climate and hydrologic regimes. (4) The first ridge chain acquires its sand source substantially from the downwind escarpments exposing the loose Quaternary sandy sediments to the air, while the ensuing ridges derive their sands dominantly from in situ deflation of the underlain Quaternary loose sandy sediments in blowouts, partly from the upwind ridges through northern elongated horns. Theoretically, the sands from riparian escarpments can be transported by wind to the downwind distal end of a dunefield after sufficient long du- ration. (5) The lower Laohahe region experienced probably three significant climatic changes in the past, corresponding to the three active dune belts, suggesting that once a large-scale dunefield occurs, it is nearly impossible to be completely stabilized, at least in its central portions. At present, seasonal shrinkage and stagnation of the lower Laoha River, wide-spread farming and afforestation in the valley, and establishing windbreaks downwind of the valley as well as surrounding the dunefield, appear to have significantly modified local flow fields and sand sources, engendering significant degradation of the dunefield.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-EW-QN313)the National Natural Science Foundation of China(No.41171414,41071185)+1 种基金the Key Project of Scientific and Technical Supporting Programs(No.2011BAC07B02-09)the West Light Foundation of the Chinese Academy of Sciences(No.O928711001)
文摘How species diversityroductivity relationships respond to temporal dynamics and land use is still not clear in semi-arid grassland ecosystems. We analyzed seasonal changes of the relationships between vegetation cover, plant density, species richness, and above- ground biomass in grasslands under grazing and exclosure in the Horqin Sandy Land of northem China. Our results showed that in grazed and fenced grassland, vegetation cover, richness, and biomass were lower in April than in August, whereas plant density showed a reverse trend. Vegetation cover during the growing season and biomass in June and August were higher in fenced grassland than in grazed grassland, whereas plant density in April and June was lower in fenced grassland than in grazed grassland. A negative relationship between species richness and biomass was found in August in fenced grassland, and in grazed grassland the relationship between plant density and biomass changed from positive in April to negative in August. The relationship between the density of the dominant plant species and the total biomass also varied with seasonal changes and land use (grazing and exclosure). These results suggest that long-term grazing, seasonal changes, and their interaction significantly influence vegetation cover, plant density, and bio- mass in grasslands. Plant species competition in fenced grassland results in seasonal changes of the relationship between species rich- ness and biomass. Long-term grazing also affects seasonal changes of the density and biomass of dominant plant species, which fur- tiler affects the seasonal relationship between plant density and biomass in grasslands. Our study demonstrates the importance of tem- poral dynamics and land use in understanding the relationship between species richness and ecosystem fianction.
基金financially supported by the research projects 2011BAC07B02,XDA05050201-04-01,and 31170413
文摘It is well known that the Hetao Basin is one of the most seriously arsenic-affected groundwater areas in China. In order to understand the characteristics of high arsenic (As) groundwater in the Basin, a brief overview of arsenic in groundwater follows. High arsenic in the Basin commonly occurs in shallow groundwater and the total arsenic concentrations range from 0.58 to 572 μg/L (average 99.73 μg/L), exceeding the maximum mandated value of 10 μg/L for drinking water in China; As(III) is the predominant species. The regional distribution pattern of arsenic in the groundwater increases from south/southeast to north/northwest. Hangjinhouqi and Wuyuan counties are considered as the most seriously affected areas, with high incidences of endemic arsenicosie diseases in the Hetao Basin. High groundwater arsenic correlates with the increase of well depth. Previous studies proposed that groundwater arsenic in the Basin is mainly originated from desorption of some natural solid materials in the sediments, under reducing condition. Generally, reducing condition is believed to be the primary factor for arsenic releasing from the sediment to groundwater in the region. Under inorganic Or bacterial processes, Fe2O3 changes to FeS and arsenic adsorbed to Fe(OH)3 dissolves into groundwater, and As(V) is re- duced to As(W). Besides, reducing environments, groundwater hydraulic gradients, organic matter, pH, evapotranspiration, and soil texture are presumed to be the predominant factors that control arsenic mobilization.
文摘Ultraviolet(UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.
基金financially supported by the National Natural Science Foundation of China (No.41201249)the Open Fund of the Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions (No.SKLFSE201203)+2 种基金the National Science and Technology Support Program (No.2011BAC07B02)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2-EW-QN313)the National Basic Research Program of China (No.2009CB421303)
文摘The ability of psammophyte photosynthesis to withstand and recover from severe droughts is crucial for vegetation sta- bility in semi-arid sandy lands. The responses of gas exchange and chlorophyll fluorescence of an annual grass, Digitaria ciliaris, were measured through three soil drought and rewatering cycles. Results showed that the net photosynthesis rate (P,) decreased by 92%, 95%, and 63% at end of the three drought periods, respectively, water use efficiency (WUE) decreased by 67%, 54%, and 48%, while the constant intercellular CO2 concentration (Ci) increased by 1.08, 0.88, and 0.45 times. During those three cycles, the trapping probability with no dark adaptation (Fv'/Fm') decreased by 55%, 51%, and 9%, the electron transport per cross section (ET0'/CS0') decreased by 63%0, 42%, and 18%, and the dissipation per cross section (DI0'/CS0') increased by 97%, 96%, and 21%. These results indicated that D. ciliaris was subjected to photoinhi- bition and some non-stomatal limitation of photosynthesis under drought. However, after four days of rewatering, its photosynthetic characteristics were restored to control values. This capability to recover from drought may contribute to making the plant's use of water as efficient as possible. Furthermore, the photosynthesis decreased more slowly in the subsequent drought cycles than in the first cycle, allowing D. ciliaris to enhance its future drought tolerance after drought hardening. Thus, it acclimatizes itself to repeated soil drought.
基金supported by research projects 2016YFC0500907,2017FY100205,41201561,Y551821001,and 145RJYA269
文摘The genetic diversity of Artemisia halodendron(Asteraceae), a constructive and dominant species in Horqin Sandy Land,was investigated to examine the genetic relationships with different hydrothermal regions in Horqin Sandy Land. We sequenced chloroplast DNA(cp DNA) fragments(trn L–F) of 243 plants from 10 populations across the Horqin Sandy Land.The analyses of cp DNA variation identified seven haplotypes. A low level of haplotype diversity(H_d=0.706) and nucleotide diversity(π=0.0013) was detected. Haplotypes clustered into two tentative clades. Low genetic differentiation among regions was consistently indicated by hierarchical analyses of molecular variance(AMOVA). Across the sampled populations, the haplotype distributions were differentiated with hydrothermal gradients.
基金supported by the Key Research and Development Plan of Ning Xia Province,China(Grant No.2020BBF02003)the National Natural Science Foundation of China(Grant No.41877540)+1 种基金the Visiting Scholar Research Program of China Scholarship Council(Grant No.201804910131)the Second Tibetan Plateau Scientific Expedition and Research program(2019QZKK0305).
文摘As a linkage between plants and soil,litter decomposition and its effect on nutrient recirculation have an important ecolog‐ical significance as they contribute to soil structure improvement and the restoration of degraded ecosystems.Fragile eco‐systems in arid regions(both hot and cold)are depleted in soil organic matter,and as a result of various factors their circu‐lation of material and energy is slower.Here we discuss how litter decomposition is necessary to maintain the stability of fragile ecosystems.We reviewed research on litter decomposition carried out in arid regions.Our objective in this review is to outline how litter decomposition,and the subsequent buildup of organic matter in soil,is a key process determining the stability of fragile ecosystems.Our review shows that existing studies have focused on the influence of single ecologi‐cal factors on litter decomposition and nutrient cycling,and highlights how the exploration of interactions among factors determining litter decomposition is still lacking.This interaction is a key aspect,since in the real world,decomposition and nutrient return to soil of litter products is affected by multiple factors.We propose a network setup on a cross-regional scale using standardized methods(e.g.,the tea bag method)to understand litter decomposition and nutrient return in frag‐ile ecosystems.Such a unique network could contribute to establish predictive models suitable for litter decomposition and nutrient return in these areas,and thus could provide theoretical and practical support for regional ecological protec‐tion and high-quality development.