The singularity problem brings troubles to the design and application for the parallel mechanism.Currently,redun-dant actuation is one of the useful methods to solve this singularity problem.However,faced to the numer...The singularity problem brings troubles to the design and application for the parallel mechanism.Currently,redun-dant actuation is one of the useful methods to solve this singularity problem.However,faced to the numerous joints in a parallel mechanism,how to make a quantitative criterion of seeking the most efficient joints added actuators for letting the mechanism passes through singularity is a necessarily open issue.This paper focuses on a 2R1T 3-UPU(U for universal joint and P for prismatic joint)parallel mechanism(PM)with two rotational and one translational(2R1T)degrees of freedom(DOFs)and the ability of multiple remote centers of motion(M-RCM).The singularity analysis based on the indexes of motion/force transmissibility and constraint shows that this PM has transmission singular-ity,constraint singularity,mixed singularity and limb singularity.To solve these singular problems,the quantifiable redundancy transmission index(RTI)and the redundancy constraint index(RCI)are proposed for optimum seeking of redundant actuators for this PM.Then the appropriate redundant actuators are selected and the working scheme for redundant actuators near the corresponding singular configuration are given to help the PM passes through the singularity.This research proposes a quantitative criterion to optimum seeking of redundant actuators for the parallel mechanism to solve its singularity.展开更多
Current research on spherical parallel mechanisms(SPMs)mainly focus on surgical robots,exoskeleton robots,entertainment equipment,and other fields.However,compared with the SPM,the structure types and research content...Current research on spherical parallel mechanisms(SPMs)mainly focus on surgical robots,exoskeleton robots,entertainment equipment,and other fields.However,compared with the SPM,the structure types and research contents of the SPM are not abundant enough.In this paper,a novel two-degree-of-freedom(2DOF)SPM with symmetrical structure is proposed and analyzed.First,the models of forward kinematics and inverse kinematics are established based on D-H parameters,and the Jacobian matrix of the mechanism is obtained and verified.Second,the workspace of the mechanism is obtained according to inverse kinematics and link interference conditions.Next,rotational characteristics analysis shows that the end effector can achieve continuous rotation about an axis located in the mid-plane and passing through the rotation center of the mechanism.Moreover,the rotational characteristics of the mechanism are proved,and motion planning is carried out.A numerical example is given to verify the kinematics analysis and motion planning.Finally,some variant mechanisms can be synthesized.This work lays the foundation for the motion control and practical application of this 2DOF SPM.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51775474)Hebei Provincial Natural Science Foundation of China(Grant No.E2020203197).
文摘The singularity problem brings troubles to the design and application for the parallel mechanism.Currently,redun-dant actuation is one of the useful methods to solve this singularity problem.However,faced to the numerous joints in a parallel mechanism,how to make a quantitative criterion of seeking the most efficient joints added actuators for letting the mechanism passes through singularity is a necessarily open issue.This paper focuses on a 2R1T 3-UPU(U for universal joint and P for prismatic joint)parallel mechanism(PM)with two rotational and one translational(2R1T)degrees of freedom(DOFs)and the ability of multiple remote centers of motion(M-RCM).The singularity analysis based on the indexes of motion/force transmissibility and constraint shows that this PM has transmission singular-ity,constraint singularity,mixed singularity and limb singularity.To solve these singular problems,the quantifiable redundancy transmission index(RTI)and the redundancy constraint index(RCI)are proposed for optimum seeking of redundant actuators for this PM.Then the appropriate redundant actuators are selected and the working scheme for redundant actuators near the corresponding singular configuration are given to help the PM passes through the singularity.This research proposes a quantitative criterion to optimum seeking of redundant actuators for the parallel mechanism to solve its singularity.
基金Supported by National Natural Science Foundation of China(Grant No.51775474)。
文摘Current research on spherical parallel mechanisms(SPMs)mainly focus on surgical robots,exoskeleton robots,entertainment equipment,and other fields.However,compared with the SPM,the structure types and research contents of the SPM are not abundant enough.In this paper,a novel two-degree-of-freedom(2DOF)SPM with symmetrical structure is proposed and analyzed.First,the models of forward kinematics and inverse kinematics are established based on D-H parameters,and the Jacobian matrix of the mechanism is obtained and verified.Second,the workspace of the mechanism is obtained according to inverse kinematics and link interference conditions.Next,rotational characteristics analysis shows that the end effector can achieve continuous rotation about an axis located in the mid-plane and passing through the rotation center of the mechanism.Moreover,the rotational characteristics of the mechanism are proved,and motion planning is carried out.A numerical example is given to verify the kinematics analysis and motion planning.Finally,some variant mechanisms can be synthesized.This work lays the foundation for the motion control and practical application of this 2DOF SPM.