期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
理论研究Cu@C_(2)N催化剂表面上水分子对电催化CO_(2)还原反应机理的影响
1
作者 徐涵煜 宋雪旦 +2 位作者 张青 于畅 邱介山 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第1期24-25,共2页
电催化CO_(2)还原反应(CO_(2)RR)的反应途径涉及多个质子-电子对转移,在水溶剂条件下,质子的来源是水分子,考虑水分子对质子-电子对的转移机制十分必要。本研究提出水辅助氢穿梭模型,与常用的以氢原子作为氢源的直接加氢模型对比,研究... 电催化CO_(2)还原反应(CO_(2)RR)的反应途径涉及多个质子-电子对转移,在水溶剂条件下,质子的来源是水分子,考虑水分子对质子-电子对的转移机制十分必要。本研究提出水辅助氢穿梭模型,与常用的以氢原子作为氢源的直接加氢模型对比,研究水分子在CO_(2)RR中对质子-电子对转移的影响。采用密度泛函理论,系统地研究了铜原子嵌入C_(2)N单层催化剂(Cu@C_(2)N)和石墨烯作为衬底的Cu@C_(2)N/石墨烯复合催化剂(Cu@C_(2)N/G)表面上不同加氢模型的CO_(2)RR反应机理。在水辅助氢穿梭模型中,氢原子与水分子结合形成水合质子,水合质子将自身的氢原子转移到催化剂表面的反应物上形成反应中间体,增强了中间体与催化剂之间的相互作用。此外,在Cu@C_(2)N/G催化剂中,石墨烯将电子转移到表面的Cu@C_(2)N上,提高了催化剂的CO_(2)RR催化活性。进一步,计算了Cu@C_(2)N和Cu@C_(2)N/G催化剂上CO_(2)RR和析氢反应的极限电位,讨论催化剂的活性和选择性。结果表明CO_(2)在低电位下容易生成HCOOH,施加高电位时可以生成CO、CH3OH和CH4并伴随着H2的生成。 展开更多
关键词 CO_(2)还原反应 电催化 氮掺杂石墨烯 水辅助氢穿梭 反应机理 密度泛函理论
下载PDF
An effective'salt in dimethyl sulfoxide/water'electrolyte enables high-voltage supercapacitor operated at-50℃ 被引量:1
2
作者 Yingbin Liu Chang Yu +5 位作者 xuedan song Siyi Hou Shuqin Lan Jinhe Yu Yuanyang Xie Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期361-367,I0009,共8页
Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo... Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors. 展开更多
关键词 Dimethyl sulfoxide CO-SOLVENT High voltage Low temperature SUPERCAPACITORS
下载PDF
Intrinsic pentagon defect engineering in multiple spatial-scale carbon frameworks for efficient triiodide reduction
3
作者 Siyi Hou xuedan song +6 位作者 Chang Yu Jiangwei Chang Yiwang Ding Yingbin Liu Xiubo Zhang Weizhe Liu Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期20-28,I0002,共10页
Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topologi... Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topological defects in carbon frameworks to reveal the relationship between reactivity and defect structure remains a challenging task.Herein,the intrinsic pentagon carbon sites that can favor electron overflow and enhance their binding affinity towards the intermediates of catalytic reaction are firstly presented by the work function and the p-band center calculations.To experimentally verify this,the cage-opening reaction of fullerene is proposed and utilized for synthesizing carbon quantum dots with specific pentagon configuration(CQDs-P),subsequently utilizing CQDs-P to modulate the micro-scale defect density of three-dimensional reduced graphene oxide(rGO)viaπ-πinteractions.The multiple spatial-scale rGO-conjugated CQDs-P structure simultaneously possesses abundant pentagon and edge defects as catalytic active sites and long-range-orderedπelectron delocalization system as conductive network.The defects-rich CQDs-P/rGO-4 all-carbon-based catalyst exhibits superb catalytic activity for triiodide reduction reaction with a high photoelectric conversion efficiency of 8.40%,superior to the Pt reference(7.97%).Theoretical calculations suggest that pentagon defects in the carbon frameworks can promote charge transfer and modulate the adsorption/dissociation behavior of the reaction intermediates,thus enhancing the electrocatalytic activity of the catalyst.This work confirms the role of intrinsic pentagon defects in catalytic reactions and provides a new insight into the synthesis of defects-rich carbon catalysts. 展开更多
关键词 Defect engineering Pentagon carbon Carbon quantum dots Electrocatalytic activity Triiodide reduction
下载PDF
Multiple active components synergistically driven heteroatom-doped porous carbon as high-performance counter electrode in dye-sensitized solar cells 被引量:2
4
作者 Hongyu Jing Danyang Wu +4 位作者 Suxia Liang xuedan song Yonglin An Ce Hao Yantao Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期89-94,共6页
A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additio... A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additional activation reagents was fabricated using K-rich pomelo peel(PP)as the carbon source,which possesses a high electric conductivity where abundant functional hetero-metal atoms are doped into the carbon framework that playing the role of catalytic graphitization.The K^+that exists within the biomass can induce self-activation during pyrolysis apart from the activating gases during the pyrolysis process.The resulting electrocatalyst of PP-850(PP was pyrolyzed at 850°C in an N_2atmosphere)with abundant heteroatoms possesses a higher power conversion efficiency(PCE)of 7.81%as the counter electrode(CE)of dye-sensitized solar cells(DSCs)compared with the CEs calcinated at other temperatures and a similar PCE with Pt counterpart(8.24%)based on the liquid I_3^-/I^-electrolyte.The better electrocatalytic performance is attributed to the synergistic effect between self-activation and the co-doping of nitrogen,sulfur and phosphorus all together in a carbon matrix.Due to the feasibility of large-scale production,rich heteroatom doping,the PP-derived carbon,which simplifies the procedure and decreases the cost,has a potential application for an alternative electrocatalyst for high-performance photovoltaic devices. 展开更多
关键词 COUNTER electrode SELF-ACTIVATION Biomass-derived carbon ELECTROCATALYTIC performance
下载PDF
Polyaniline-based electrocatalysts through emulsion polymerization:Electrochemical and electrocatalytic performances 被引量:1
5
作者 Shehnaz xuedan song +5 位作者 Suzhen Ren Ying Yang Yanan Guo Hongyu Jing Qing Mao Ce Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期182-192,共11页
One of the major challenges associated with fuel cells is the design of highly efficient electrocatalysts to reduce the high overpotential of the oxygen reduction reaction (ORR). Here we report Polyaniline (PANI) base... One of the major challenges associated with fuel cells is the design of highly efficient electrocatalysts to reduce the high overpotential of the oxygen reduction reaction (ORR). Here we report Polyaniline (PANI) based micro/nanomaterials with or without transition metals, prepared by the emulsion polymerization and subsequent heat treatment. PANI microspheres with the diameter of about 0.7 mu m have been prepared in basic (NH3 solution) condition, using two different types of surfactant (CTAB, SDS) as the stabilizer, ammonium persulphate (APS) as oxidant with aniline/surfactants molar ratio at 1/1 under the hydrothermal treatment. PANI nanorods, Fe-PANI, and Fe-Co-PANI have been synthesized in acidic (HCI) medium with aniline/surfactants molar ratio at 1/2 and polymerization carried out without stirring for 24 h. Products mainly Fe-Co-PANI have shown high current density with increasing sweep rate and excellent specific capacitance 1753 F/g at the scan rate of 1 mV/s. Additionally, it has shown high thermal stability by thermogravimetric analysis (TGA). Fe-PANI has been investigated for excellent performance toward ORR with four electron selectivity in the basic electrolyte. The PANI-based catalysts from emulsion polymerization demonstrate that the method is valuable for making non-precious metal heterogeneous electrocatalysts for ORR or energy storage and conversion technology. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Emulsion polymerization Interfacial conductivity Fe-Co-PANI Non-precious metal electrocatalyst Oxygen reduction reaction
下载PDF
Insight into the CO2 photoreduction mechanism over 9-hydroxyphenal-1-one(HPHN) carbon quantum dots
6
作者 Zhengyan Zhao Heming Zhang +4 位作者 xuedan song Yantao Shi Duanhui Si Hongjiang Li Ce Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期269-276,I0009,共9页
Converting CO2 to carbon-containing fuels is an effective approach to relieving energy shortages.Carbon quantum dots(CQDs) have shown distinct properties and attracted tremendous interest in CO2 reduction.Herein,we re... Converting CO2 to carbon-containing fuels is an effective approach to relieving energy shortages.Carbon quantum dots(CQDs) have shown distinct properties and attracted tremendous interest in CO2 reduction.Herein,we report a joint experimental-computational mechanistic study of photoreduction CO2 to CO on the model catalyst 9-hydroxyphenal-1-one(HPHN) CQDs with known structure.Our theoretical calculations reveal that the rate-determining step is COOH·formation,which is closely related to the proton and electron transfer induced by hydrogen bonding in the excited state.According to the calculated volcano plot,the solution we proposed is addition Zn^(2+) ions.The active center changed from the hydroxyl oxygen atom to the Zn atom and the barrier of the COOH·formation step is noticeably decreased when Zn^(2+) ions are added.It is further confirmed by the experimental data that the activity of CO2 reduction increases 2.9 times when Zn^(2+) ions are added. 展开更多
关键词 CO2 reduction DFT study Reaction mechanism Hydrogen bonding Excited state
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部