A folding beam-type piezoelectric phononic crystal model is proposed to isolate vibration. Two piezoelectric bimorphs are joined by two masses as a folding structure to comprise each unit cell of the piezoelectric pho...A folding beam-type piezoelectric phononic crystal model is proposed to isolate vibration. Two piezoelectric bimorphs are joined by two masses as a folding structure to comprise each unit cell of the piezoelectric phononic crystal. Each bimorph is connected independently by a resistive-inductive resonant shunting circuit. The folding structure extends the propagation path of elastic waves, while its structure size remains quite small. Propagation of coupled extension-flexural elastic waves is studied by the classical laminated beam theory and transfer matrix method. The theoretical model is further verified with the finite element method(FEM). The effects of geometrical and circuit parameters on the band gaps are analyzed. With only 4 unit cells, the folding beam-type piezoelectric phononic crystal generates two Bragg band gaps of 369 Hz to1 687 Hz and 2 127 Hz to 4 000 Hz. In addition, between these two Bragg band gaps, a locally resonant band gap is induced by resonant shunting circuits. Appropriate circuit parameters are used to join these two Bragg band gaps by the locally resonant band gap.Thus, a low-frequency and broad band gap of 369 Hz to 4 000 Hz is obtained.展开更多
A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In ...A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In this study,a back-surface micro-crack is considered as a research target.A roughness-modified ultrasonic testing model for micro-cracks is established based on a multi-Gaussian beam model and the principle of phase-screen approximation.The echo signals of micro-cracks and noises corresponding to different rough front surfaces and rough back surfaces are obtained based on a reference reflector signal acquired from a two-dimensional simulation model.Further compari-son between the analytical and numerical models shows that the responses of micro-cracks under the effects of dif-ferent corroded rough surfaces can be accurately predicted.The numerical and analytical results show that the echo signal amplitude of the micro-crack decreases significantly with an increase in roughness,whereas the noise ampli-tude slightly increases.Moreover,the effect of the rough front surface on the echo signal of the micro-crack is greater than that of the rough back surface.When the root-mean-square(RMS)height of the surface microtopography is less than 15μm,the two rough surfaces have less influence on the echo signals detected by a focused transducer with a frequency of 5 MHz and diameter of 6 mm.A method for predicting and evaluating the detection accuracy of micro-cracks under different rough surfaces is proposed by combining the theoretical model and a finite element simulation.Then,a series of rough surface samples containing different micro-cracks are fabricated to experimentally validate the evaluation method.展开更多
Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are stud...Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are studied. To validate the results for the case of relatively thick shells or equivalently high-frequency modes with short wavelengths, existing analysis is extended by considering shear deformation and rotatory inertia. An analytical solution is obtained. Based on the solution, resonant frequencies and mode shapes are calculated.展开更多
In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The cal...In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.展开更多
The coupled extensional and flexural vibrations of an annular corrugated shell piezoelectric transducer consisting of multiple circularly-annular surfaces smoothly connected along the interfaces were investigated in t...The coupled extensional and flexural vibrations of an annular corrugated shell piezoelectric transducer consisting of multiple circularly-annular surfaces smoothly connected along the interfaces were investigated in the paper. Only a time-harmonic voltage is applied across two electrodes of the piezoelectric shell as the external loading. A theoretical solution was obtained using the classical shell theory. Based on the solution, basic vibration characteristics of resonant frequencies, mode shapes were calculated and examined.展开更多
Passive vibration isolation systems have been widely applied due to their low power consumption and high reliability.Nevertheless,the design of vibration isolators is usually limited by the narrow space of installatio...Passive vibration isolation systems have been widely applied due to their low power consumption and high reliability.Nevertheless,the design of vibration isolators is usually limited by the narrow space of installation,and the requirement of heavy loads needs the high supporting stiffness that leads to the narrow isolation frequency band.To improve the vibration isolation performance of passive isolation systems for dynamic loaded equipment,a novel modular quasi-zero stiffness vibration isolator(MQZS-VI)with high linearity and integrated fluid damping is proposed.The MQZS-VI can achieve high-performance vibration isolation under a constraint mounted space,which is realized by highly integrating a novel combined magnetic negative stiffness mechanism into a damping structure:The stator magnets are integrated into the cylinder block,and the moving magnets providing negative-stiffness force also function as the piston supplying damping force simultaneously.An analytical model of the novel MQZS-VI is established and verified first.The effects of geometric parameters on the characteristics of negative stiffness and damping are then elucidated in detail based on the analytical model,and the design procedure is proposed to provide guidelines for the performance optimization of the MQZS-VI.Finally,static and dynamic experiments are conducted on the prototype.The experimental results demonstrate the proposed analytical model can be effectively utilized in the optimal design of the MQZS-VI,and the optimized MQZS-VI broadened greatly the isolation frequency band and suppressed the resonance peak simultaneously,which presented a substantial potential for application in vibration isolation for dynamic loaded equipment.展开更多
In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results ...In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results of the normal squeeze force are discussed,and fitting functions of the squeeze and correction coefficients are given.The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state,respectively.Furthermore,the slip correction coefficient decreases with the increase in the velocity.The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.展开更多
This study focused on the impact behavior of carbon-fiber-wrapped composite cylinders subjected to impact from flat-ended, hemispherical-nosed and conical-nosed impactors. Damage morphologies of the cylinders and mech...This study focused on the impact behavior of carbon-fiber-wrapped composite cylinders subjected to impact from flat-ended, hemispherical-nosed and conical-nosed impactors. Damage morphologies of the cylinders and mechanisms of the damage were analyzed. Change laws of the maximum impact forces, durations of impact processes and energies absorbed by the cylinders after impact with different impactors and impact energies were obtained. A finite element model was developed and the simulation results were in reason- able agreement with the tests. Finally, taking the flat-ended impactor as an example, stress distributions of the cylinders under pressurization and impact were discussed.展开更多
Achieving galloping gait in quadruped robots is challenging, because the galloping gait exhibits complex dynamical behaviors of a hybrid nonlinear under-actuated dynamic system. This paper presents a learning approach...Achieving galloping gait in quadruped robots is challenging, because the galloping gait exhibits complex dynamical behaviors of a hybrid nonlinear under-actuated dynamic system. This paper presents a learning approach to quadruped robot galloping control. The control function is obtained through directly approximating real gait data by learning algorithm, without consideration of robot's model and environment where the robot is located. Three motion control parameters are chosen to determine the galloping process, and the deduced control function is learned iteratively with modified Locally Weighted Projection Regression (LWPR) algorithm. Experiments conducted upon the bioinspired quadruped robot, AgiDog, indicate that the robot can improve running performance continuously along the learning process, and adapt itself to model and environment uncertainties.展开更多
Nano-precision positioning stages are characterized by rigid-flexible coupling systems. The complex dynamic characteristics of mechanical structure of a stage, which are determined by structural and dynamic parameters...Nano-precision positioning stages are characterized by rigid-flexible coupling systems. The complex dynamic characteristics of mechanical structure of a stage, which are determined by structural and dynamic parameters, exert a serious influence on the accuracy of its motion and measurement. Systematic evaluation of such influence is essential for the design and improvement of stages. A systematic approach to modeling the dynamic accuracy of a nano-precision positioning stage is developed in this work by integrating a multi-rigid-body dynamic model of the mechanical system and measurement system models. The influence of structural and dynamic parameters, including aerostatic bearing configurations, motion plane errors, foundation vibrations, and positions of the acting points of driving forces, on dynamic accuracy is investigated by adopting the H-type configured stage as an example. The approach is programmed and integrated into a software framework that supports the dynamic design of nano-precision positioning stages. The software framework is then applied to the design of a nano-precision positioning stage used in a packaging lithography machine.展开更多
This paper presents a control approach for bounding gait of quadruped robots by applying the concept of Virtual Constraints (VCs). A VC is a relative motion relation between two related joints imposed to the robots ...This paper presents a control approach for bounding gait of quadruped robots by applying the concept of Virtual Constraints (VCs). A VC is a relative motion relation between two related joints imposed to the robots in terms of a specified gait, which can drive the robot to run with desired gait. To determine VCs for highly dynamic bounding gait, the limit cycle motions of the passive dynamic model of bounding gait are analyzed. The leg length and hip/shoulder angle trajectories corresponding to the limit cycles are parameterized by leg angles using 4 th-order polynomials. In order to track the calculated periodic motions, the polynomials are imposed on the robot as virtual motion constraints by a high-level state machine controller. A bounding speed feedback strategy is introduced to stabilize the robot running speed and enhance the stability. The control approach was applied to a newly designed lightweight bioinspired quadruped robot, AgiDog. The experimental results demonstrate that the robot can bound at a frequency up to 5 Hz and bound at a maximum speed of 1.2 m·s^-1 in sagittal plane with a Froude number approximating to 1.展开更多
In Volume 2/3 of R5 "An assessment procedure for the high temperature response of structures", the strain based ductility exhaustion method is suggested to calculate the creep damage of stress concentration region, ...In Volume 2/3 of R5 "An assessment procedure for the high temperature response of structures", the strain based ductility exhaustion method is suggested to calculate the creep damage of stress concentration region, which involves description of creep dwell initial stress, stress drop and creep ductility. Considering lots of uncertainty existed in these assessment, some sensitivity analysis is required in R5 procedure to ensure the conservatism of assessment results. In this paper, laboratory creep-fatigue test data of 316H at 550 ℃ with different loading conditions are selected as a special case to investigate whether the basic R5 approach is conservative, and the different material data combinations of cyclic stress-strain, creep deformation and creep ductility are used to identify those significant parameters affecting the assessment results. The analytical results indicate that the creep deformation model and creep ductility data are more significant to the results comparing with cyclic stress-strain data. If the upper bound of creep deformation law and lower bound of creep ductility data are used to predict their creep-fatigue lives, the degree of conservatism can be as large as a factor of -300, but if the modified creep deformation model and cast specific ductility data are used, very well prediction results can be gained within a factor of ±2.0 although there is slight non-conservatism.展开更多
A circular thin plate is proposed for vibration attenuation,which is attached alternately by annular piezoelectric unimorphs with resonant shunt circuits.Two kinds of equal frequency resonant shunt circuits are design...A circular thin plate is proposed for vibration attenuation,which is attached alternately by annular piezoelectric unimorphs with resonant shunt circuits.Two kinds of equal frequency resonant shunt circuits are designed to achieve an integrated locally resonant(LR)band gap(BG) with a much smaller transmission factor:(1) the structure is arrayed periodically while the resonant shunt circuits are aperiodic;(2) the resonant shunt circuits are periodic while the structure is aperiodic.The transmission factor curve is calculated,which is validated by the finite element method.Dependences of the LR BG performance upon the geometric and electric parameters are also analyzed.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11272126,51435006,and 51121002)the Fundamental Research Funds for the Central Universities(Nos.HUST:2016JCTD114 and HUST:2015TS121)
文摘A folding beam-type piezoelectric phononic crystal model is proposed to isolate vibration. Two piezoelectric bimorphs are joined by two masses as a folding structure to comprise each unit cell of the piezoelectric phononic crystal. Each bimorph is connected independently by a resistive-inductive resonant shunting circuit. The folding structure extends the propagation path of elastic waves, while its structure size remains quite small. Propagation of coupled extension-flexural elastic waves is studied by the classical laminated beam theory and transfer matrix method. The theoretical model is further verified with the finite element method(FEM). The effects of geometrical and circuit parameters on the band gaps are analyzed. With only 4 unit cells, the folding beam-type piezoelectric phononic crystal generates two Bragg band gaps of 369 Hz to1 687 Hz and 2 127 Hz to 4 000 Hz. In addition, between these two Bragg band gaps, a locally resonant band gap is induced by resonant shunting circuits. Appropriate circuit parameters are used to join these two Bragg band gaps by the locally resonant band gap.Thus, a low-frequency and broad band gap of 369 Hz to 4 000 Hz is obtained.
基金Supported by the Key Research and Development Plan of Anhui Province(Grant No.202004a05020003)Anhui Provincial Natural Science Foundation(Grant Nos.2008085QE233,2008085J24)+1 种基金the Science and Technology Major Project of Anhui Province(Grant No.201903a05020010)the Doctoral Science and Technology Foundation of Hefei General Machinery Research Institute(Grant No.2019010383).
文摘A high-precision evaluation of ultrasonic detection sensitivity for a micro-crack can be restricted by a corroded rough surface when the surface microtopography is of the same order of magnitude as the crack depth.In this study,a back-surface micro-crack is considered as a research target.A roughness-modified ultrasonic testing model for micro-cracks is established based on a multi-Gaussian beam model and the principle of phase-screen approximation.The echo signals of micro-cracks and noises corresponding to different rough front surfaces and rough back surfaces are obtained based on a reference reflector signal acquired from a two-dimensional simulation model.Further compari-son between the analytical and numerical models shows that the responses of micro-cracks under the effects of dif-ferent corroded rough surfaces can be accurately predicted.The numerical and analytical results show that the echo signal amplitude of the micro-crack decreases significantly with an increase in roughness,whereas the noise ampli-tude slightly increases.Moreover,the effect of the rough front surface on the echo signal of the micro-crack is greater than that of the rough back surface.When the root-mean-square(RMS)height of the surface microtopography is less than 15μm,the two rough surfaces have less influence on the echo signals detected by a focused transducer with a frequency of 5 MHz and diameter of 6 mm.A method for predicting and evaluating the detection accuracy of micro-cracks under different rough surfaces is proposed by combining the theoretical model and a finite element simulation.Then,a series of rough surface samples containing different micro-cracks are fabricated to experimentally validate the evaluation method.
基金supported by the National Natural Science Foundation of China(Nos.60302001 and 10872074)Major State Basic Research Development Program of China(973 Program)(No.2009CB724205).
文摘Coupled extensional and flexural cylindrical vibrations of a corrugated cylindrical piezoelectric shell consisting of multiple pieces of circular cylindrical surfaces smoothly connected along their generatrix are studied. To validate the results for the case of relatively thick shells or equivalently high-frequency modes with short wavelengths, existing analysis is extended by considering shear deformation and rotatory inertia. An analytical solution is obtained. Based on the solution, resonant frequencies and mode shapes are calculated.
文摘In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.
基金supported by the National Natural Science Foundation of China(Nos.60302001,10872074 and 10932004)Major State Basic Research Development Program of China(973 Program)(No.2009CB724205)
文摘The coupled extensional and flexural vibrations of an annular corrugated shell piezoelectric transducer consisting of multiple circularly-annular surfaces smoothly connected along the interfaces were investigated in the paper. Only a time-harmonic voltage is applied across two electrodes of the piezoelectric shell as the external loading. A theoretical solution was obtained using the classical shell theory. Based on the solution, basic vibration characteristics of resonant frequencies, mode shapes were calculated and examined.
基金supported by the National Key R&D Program of China(Grant Nos.2020YFB2007300 and 2020YFB2007601)the National Natural Science Foundation of China(Grant Nos.52075193,52305107,and 52275112)+1 种基金the National Science and Technology Major Project of China(Grant No.2017ZX02101007-002)the Postdoctoral Science Foundation of China(Grant No.2022M711250).
文摘Passive vibration isolation systems have been widely applied due to their low power consumption and high reliability.Nevertheless,the design of vibration isolators is usually limited by the narrow space of installation,and the requirement of heavy loads needs the high supporting stiffness that leads to the narrow isolation frequency band.To improve the vibration isolation performance of passive isolation systems for dynamic loaded equipment,a novel modular quasi-zero stiffness vibration isolator(MQZS-VI)with high linearity and integrated fluid damping is proposed.The MQZS-VI can achieve high-performance vibration isolation under a constraint mounted space,which is realized by highly integrating a novel combined magnetic negative stiffness mechanism into a damping structure:The stator magnets are integrated into the cylinder block,and the moving magnets providing negative-stiffness force also function as the piston supplying damping force simultaneously.An analytical model of the novel MQZS-VI is established and verified first.The effects of geometric parameters on the characteristics of negative stiffness and damping are then elucidated in detail based on the analytical model,and the design procedure is proposed to provide guidelines for the performance optimization of the MQZS-VI.Finally,static and dynamic experiments are conducted on the prototype.The experimental results demonstrate the proposed analytical model can be effectively utilized in the optimal design of the MQZS-VI,and the optimized MQZS-VI broadened greatly the isolation frequency band and suppressed the resonance peak simultaneously,which presented a substantial potential for application in vibration isolation for dynamic loaded equipment.
基金Project supported by Seed Grant Project of CAU for World’s Top Agricultural University International Cooperation and Exchange.
文摘In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results of the normal squeeze force are discussed,and fitting functions of the squeeze and correction coefficients are given.The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state,respectively.Furthermore,the slip correction coefficient decreases with the increase in the velocity.The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.
基金supported by National Natural Science Foundation of China (no.:51305122)National Key Research and Development Program of China (no.:2016YFC0801902)+1 种基金Anhui Provincial Natural Science Foundation (no.:1608085ME111)Anhui Province Scientific and Technical Problem Tackling Plan (no.:1604a0902163)
文摘This study focused on the impact behavior of carbon-fiber-wrapped composite cylinders subjected to impact from flat-ended, hemispherical-nosed and conical-nosed impactors. Damage morphologies of the cylinders and mechanisms of the damage were analyzed. Change laws of the maximum impact forces, durations of impact processes and energies absorbed by the cylinders after impact with different impactors and impact energies were obtained. A finite element model was developed and the simulation results were in reason- able agreement with the tests. Finally, taking the flat-ended impactor as an example, stress distributions of the cylinders under pressurization and impact were discussed.
基金Acknowledgment This work is partially supported by the National Natural Science Foundation of China (NSFC) under grant numbers 61175097 and 51475177, and the Research Fund for the Doctoral Programme of Higher Education of China (RFDP) under grant number 20130142110081.
文摘Achieving galloping gait in quadruped robots is challenging, because the galloping gait exhibits complex dynamical behaviors of a hybrid nonlinear under-actuated dynamic system. This paper presents a learning approach to quadruped robot galloping control. The control function is obtained through directly approximating real gait data by learning algorithm, without consideration of robot's model and environment where the robot is located. Three motion control parameters are chosen to determine the galloping process, and the deduced control function is learned iteratively with modified Locally Weighted Projection Regression (LWPR) algorithm. Experiments conducted upon the bioinspired quadruped robot, AgiDog, indicate that the robot can improve running performance continuously along the learning process, and adapt itself to model and environment uncertainties.
基金National Science and Technology Major Project of China (Grant Nos. 2009ZX02204- 006 and 2017ZX02101007-002)the National Natural Science Foundation of China (Grant Nos. 51435006 and 51675195).
文摘Nano-precision positioning stages are characterized by rigid-flexible coupling systems. The complex dynamic characteristics of mechanical structure of a stage, which are determined by structural and dynamic parameters, exert a serious influence on the accuracy of its motion and measurement. Systematic evaluation of such influence is essential for the design and improvement of stages. A systematic approach to modeling the dynamic accuracy of a nano-precision positioning stage is developed in this work by integrating a multi-rigid-body dynamic model of the mechanical system and measurement system models. The influence of structural and dynamic parameters, including aerostatic bearing configurations, motion plane errors, foundation vibrations, and positions of the acting points of driving forces, on dynamic accuracy is investigated by adopting the H-type configured stage as an example. The approach is programmed and integrated into a software framework that supports the dynamic design of nano-precision positioning stages. The software framework is then applied to the design of a nano-precision positioning stage used in a packaging lithography machine.
基金This work is partially supported by the National Natural Science Foundation of China (NSFC) under grant numbers 61175097 and 51475177, and the Research Fund for the Doctoral Program of Higher Education of China (RFDP) under grant number 20130142110081, and the China Postdoctoral Science Foundation under grant number 2016M602281.
文摘This paper presents a control approach for bounding gait of quadruped robots by applying the concept of Virtual Constraints (VCs). A VC is a relative motion relation between two related joints imposed to the robots in terms of a specified gait, which can drive the robot to run with desired gait. To determine VCs for highly dynamic bounding gait, the limit cycle motions of the passive dynamic model of bounding gait are analyzed. The leg length and hip/shoulder angle trajectories corresponding to the limit cycles are parameterized by leg angles using 4 th-order polynomials. In order to track the calculated periodic motions, the polynomials are imposed on the robot as virtual motion constraints by a high-level state machine controller. A bounding speed feedback strategy is introduced to stabilize the robot running speed and enhance the stability. The control approach was applied to a newly designed lightweight bioinspired quadruped robot, AgiDog. The experimental results demonstrate that the robot can bound at a frequency up to 5 Hz and bound at a maximum speed of 1.2 m·s^-1 in sagittal plane with a Froude number approximating to 1.
基金supported by the National High Technical Research and Development Programme of China (No.2009AA044802)
文摘In Volume 2/3 of R5 "An assessment procedure for the high temperature response of structures", the strain based ductility exhaustion method is suggested to calculate the creep damage of stress concentration region, which involves description of creep dwell initial stress, stress drop and creep ductility. Considering lots of uncertainty existed in these assessment, some sensitivity analysis is required in R5 procedure to ensure the conservatism of assessment results. In this paper, laboratory creep-fatigue test data of 316H at 550 ℃ with different loading conditions are selected as a special case to investigate whether the basic R5 approach is conservative, and the different material data combinations of cyclic stress-strain, creep deformation and creep ductility are used to identify those significant parameters affecting the assessment results. The analytical results indicate that the creep deformation model and creep ductility data are more significant to the results comparing with cyclic stress-strain data. If the upper bound of creep deformation law and lower bound of creep ductility data are used to predict their creep-fatigue lives, the degree of conservatism can be as large as a factor of -300, but if the modified creep deformation model and cast specific ductility data are used, very well prediction results can be gained within a factor of ±2.0 although there is slight non-conservatism.
基金Project supported by the National Natural Science Foundation of China(Nos.11272126,51435006,and 51421062)the Fundamental Research Funds for the Central Universities,HUST:2016JCTD114 and 2015TS121the Research Fund for the Doctoral Program of Higher Education of China(No.20110142120050)
文摘A circular thin plate is proposed for vibration attenuation,which is attached alternately by annular piezoelectric unimorphs with resonant shunt circuits.Two kinds of equal frequency resonant shunt circuits are designed to achieve an integrated locally resonant(LR)band gap(BG) with a much smaller transmission factor:(1) the structure is arrayed periodically while the resonant shunt circuits are aperiodic;(2) the resonant shunt circuits are periodic while the structure is aperiodic.The transmission factor curve is calculated,which is validated by the finite element method.Dependences of the LR BG performance upon the geometric and electric parameters are also analyzed.