Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid...Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid development of the battery industry,the recycling of spent ternary LIBs has become a hot topic because of their economic value and environmental concerns.To date,a con-siderable amount of literature has reported on the recycling of spent ternary LIBs designed to provide an efficient,economical,and envir-onmentally friendly method for battery recycling.This article examines the latest developments in various technologies for recycling spent ternary LIBs in both research and practical production,including pretreatment,pyrometallurgy,hydrometallurgy,pyro-hydrometallurgy,and direct regeneration.Suggestions for addressing challenges based on the benefits and disadvantages of each method are made.Finally,through a comparison of the feasibility and economic benefits of various technologies,the challenges faced during battery recycling are summarized,and future development directions are proposed.展开更多
Cigarette design and improvement according to consumer needs is an important basis for market-oriented management.The preferences of cigarette consumption such as cigarette product types,packaging styles,packaging col...Cigarette design and improvement according to consumer needs is an important basis for market-oriented management.The preferences of cigarette consumption such as cigarette product types,packaging styles,packaging colors and packaging materials were investigated and the real needs of cigarette consumers were figured out,in order to provide specific work guidance for the development of new cigarette products.展开更多
Maintaining low modulus while endowing the wide-range linear stretchability to wearable or implantable devices is crucial for these devices to reduce the mechanical mismatch between the devices and human skin/tissue i...Maintaining low modulus while endowing the wide-range linear stretchability to wearable or implantable devices is crucial for these devices to reduce the mechanical mismatch between the devices and human skin/tissue interfaces.However,improving linear stretchability often results in an increased modulus of stretchable electronic materials,which hinders their conformability in long-term quantifiable monitoring of organs.Herein,we develop a hybrid structure involving interlocking low-modulus porous elastomers(Ecoflex-0030)and MXene-based hydrogels with crosslinking networks of polyvinyl alcohol,sodium alginate,and MXene.This hydrogel–elastomer structure exhibits superior performance compared with previous reports,with a wide linear stretchability strain range from 0 to 1000%and maintaining a low modulus of 6.4 kPa.Moreover,the hydrogel–elastomer hybrids can be utilized as highly sensitive strain sensors with remarkable characteristics,including high sensitivity(gauge factor~3.52),a linear correlation between the resistance and strain(0–200%),rapid response(0.18 s)and recovery times(0.21 s),and excellent electrical reproducibility(1000 loading–unloading cycles).Those electrical and mechanical properties allow the sensor to act as a suitable quantifiable equipment in organ monitoring,human activities detecting,and human–machine interactions.展开更多
The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method impl...The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method implemented in ANSYS Fluent 14.5 in conjunction with the continuum surface force model. It is found that for both hydrophobic and hydrophilic microchannels, the coalescence between the moving liquid column and droplet can accelerate the original liquid column movement as a result of the induced curvature that lowers the liquid pressure at the interface. As compared to the rectangular microchannel with the same hydraulic diameter, the triangular microchannel exhibits smaller velocity increment ratio because of stronger viscous effect. Simulation results also reveal that the velocity increment ratio increases with the contact angle in hydrophobic microchannels, but it is reverse in the hydrophilic microchannels. The effects of the droplet size, lengthways and transverse positions are also investigated in this work. It is shown that larger droplet and smaller distance between the droplet and inlet or the substrate center can result in larger velocity increment ratio as a result of higher surface energy and lower viscous dissipation energy, respectively. The results obtained in this study create a solid theoretical foundation for designingand optimizing microfluidic devices encountering such a typical phenomenon.展开更多
Tetracyclines are refractory pollutants that cause persistent harm to the environment and human health.Therefore,it is urgently necessary to develop methods to promote the efficient degradation and conversion of tetra...Tetracyclines are refractory pollutants that cause persistent harm to the environment and human health.Therefore,it is urgently necessary to develop methods to promote the efficient degradation and conversion of tetracyclines in wastewater.This report proposes a photobiocatalytic synergistic system involving the coupling of GeO_(2)/Zn-doped phosphotungstic acid hydrate/TiO_(2)(GeO_(2)/Zn-HPW/TiO_(2))-loaded photocatalytic optical hollow fibers(POHFs)and an algalebacterial biofilm.The GeO_(2)/Zn-HPW/TiO_(2) photocatalyst exhibits a broad absorption edge extending to 1000 nm,as well as high-efficiency photoelectric conversion and electron transfer,which allow the GeO_(2)/Zn-HPW/TiO_(2)-coated POHFs to provide high light intensity to promote biofilm growth.The resulting high photocatalytic activity rapidly and stably reduces the toxicity and increases the biodegradability of tetracycline-containing wastewater.The biofilm enriched with Salinarimonas,Coelastrella sp.,and Rhizobium,maintains its activity for the rapid photocatalytic degradation and biotransformation of intermediates to generate the O_(2) required for photocatalysis.Overall,the synergistic photocatalytic biofilm system developed herein provides an effective and efficient approach for the rapid degradation and conversion of water containing high concentrations of tetracycline.展开更多
In this study, a membraneless, monolithic micro photocatalytic fuel cell with an air-breathing cathode was developed for simultaneous wastewater treatment and electricity generation. In this newly-developed micro phot...In this study, a membraneless, monolithic micro photocatalytic fuel cell with an air-breathing cathode was developed for simultaneous wastewater treatment and electricity generation. In this newly-developed micro photocatalytic fuel cell, the photoanode and cathode were arranged with a shoulder-to-shoulder design, forming two planar electrodes. Such design offers several advantages of enhanced mass transfer, uniform light distribution, short light transfer path, membrane elimination and easy fabrication, integration, and compatibility with other microdevices. The performance of this type fuel cell was evaluated by using methanol as a model pollutant under the alkaline condition. Experimental results indicated the developed micro photocatalytic fuel cell was able to show good photo-response to the illumination and satisfactory performance as well as durability. Parametric study on the cell performance was also performed. It was found that increasing the light intensity, methanol concentration andKOH concentration could improve the cell performance. But for the effect of the liquid flow rate, it was shown that the cell performance firstly increased with increasing the liquid flow rate and then decreased with further increasing the liquid flow rate. This study not only opens a new avenue for the design of the micro photocatalytic fuel cell but also is helpful for the optimization of the operating conditions.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos.52204412 and U2002212)the National Key R&D Program of China(No.2021YFC 1910504)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-031A1).
文摘Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid development of the battery industry,the recycling of spent ternary LIBs has become a hot topic because of their economic value and environmental concerns.To date,a con-siderable amount of literature has reported on the recycling of spent ternary LIBs designed to provide an efficient,economical,and envir-onmentally friendly method for battery recycling.This article examines the latest developments in various technologies for recycling spent ternary LIBs in both research and practical production,including pretreatment,pyrometallurgy,hydrometallurgy,pyro-hydrometallurgy,and direct regeneration.Suggestions for addressing challenges based on the benefits and disadvantages of each method are made.Finally,through a comparison of the feasibility and economic benefits of various technologies,the challenges faced during battery recycling are summarized,and future development directions are proposed.
基金Key Project of China Tobacco Yunnan Industry Co.,Ltd.(DYGJ[2019]167)Construction and Application of Research and Development Information Platform Based on Market and Consumer Demand Orientation(2019XX01).
文摘Cigarette design and improvement according to consumer needs is an important basis for market-oriented management.The preferences of cigarette consumption such as cigarette product types,packaging styles,packaging colors and packaging materials were investigated and the real needs of cigarette consumers were figured out,in order to provide specific work guidance for the development of new cigarette products.
基金supported by the National Natural Science Foundation of China(62001066,62104022,and 61971074)the Natural Science Foundation of Chongqing(2022NSCQ-MSX2366)+11 种基金the Fundamental Research Funds for the Central Universities(2020CDJ-LHZZ069 and 2020CDJYGGD004)the open research fund of Key Laboratory of MEMS of Ministry of Education,Southeast Universitythe Science and Technology Research Program of Chongqing Municipal Education Commission(kjzd-k202000105)the Start-up Foundation of Nanjing Vocational University of Industry Technology(YK21-03-02201012321DXS79HK2351-10:205050623HK097)the Natural Science Foundation of Jiangsu Province(BK20160702)the High-level Training Project for Professional-leader Teachers of Higher Vocational Colleges in Jiangsu Province(2023TDFX007)the Ministry of Science and Technology of China(2017YFA0204800)the National Natural Science Foundation of China(51420105003,11525415,11327901,61274114,61601116,11674052,and 11204034)the Fundamental Research Funds for the Central Universities(2242017K40066,2242017K40067,2242016K41039,2242020K40023,and 2242019R10)funded by the Administration Office of Jiangsu Talent resources。
文摘Maintaining low modulus while endowing the wide-range linear stretchability to wearable or implantable devices is crucial for these devices to reduce the mechanical mismatch between the devices and human skin/tissue interfaces.However,improving linear stretchability often results in an increased modulus of stretchable electronic materials,which hinders their conformability in long-term quantifiable monitoring of organs.Herein,we develop a hybrid structure involving interlocking low-modulus porous elastomers(Ecoflex-0030)and MXene-based hydrogels with crosslinking networks of polyvinyl alcohol,sodium alginate,and MXene.This hydrogel–elastomer structure exhibits superior performance compared with previous reports,with a wide linear stretchability strain range from 0 to 1000%and maintaining a low modulus of 6.4 kPa.Moreover,the hydrogel–elastomer hybrids can be utilized as highly sensitive strain sensors with remarkable characteristics,including high sensitivity(gauge factor~3.52),a linear correlation between the resistance and strain(0–200%),rapid response(0.18 s)and recovery times(0.21 s),and excellent electrical reproducibility(1000 loading–unloading cycles).Those electrical and mechanical properties allow the sensor to act as a suitable quantifiable equipment in organ monitoring,human activities detecting,and human–machine interactions.
基金supported by the National Natural Science Foundation of China(5122260351276208 and51325602)+1 种基金the Fundamental Research Funds for the Central Universities(CDJZR12148801)Program for New Century Excellent Talents in University(NCET-12-0591)
文摘The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method implemented in ANSYS Fluent 14.5 in conjunction with the continuum surface force model. It is found that for both hydrophobic and hydrophilic microchannels, the coalescence between the moving liquid column and droplet can accelerate the original liquid column movement as a result of the induced curvature that lowers the liquid pressure at the interface. As compared to the rectangular microchannel with the same hydraulic diameter, the triangular microchannel exhibits smaller velocity increment ratio because of stronger viscous effect. Simulation results also reveal that the velocity increment ratio increases with the contact angle in hydrophobic microchannels, but it is reverse in the hydrophilic microchannels. The effects of the droplet size, lengthways and transverse positions are also investigated in this work. It is shown that larger droplet and smaller distance between the droplet and inlet or the substrate center can result in larger velocity increment ratio as a result of higher surface energy and lower viscous dissipation energy, respectively. The results obtained in this study create a solid theoretical foundation for designingand optimizing microfluidic devices encountering such a typical phenomenon.
基金supported in part by the National Natural Science Foundation of China(NSFC)(52176178,51876018)Innovation Research Group of Universities in Chongqing(CXQT21035)+2 种基金Scientific and Technological Research Programof Chongqing Municipal Education Commission of China(KJZD-M202201101)Chongqing Postgraduate Innovation Project(CYS22318)Chongqing University of Technology Graduate Education High Quality Development Project(gzlcx20222022).
文摘Tetracyclines are refractory pollutants that cause persistent harm to the environment and human health.Therefore,it is urgently necessary to develop methods to promote the efficient degradation and conversion of tetracyclines in wastewater.This report proposes a photobiocatalytic synergistic system involving the coupling of GeO_(2)/Zn-doped phosphotungstic acid hydrate/TiO_(2)(GeO_(2)/Zn-HPW/TiO_(2))-loaded photocatalytic optical hollow fibers(POHFs)and an algalebacterial biofilm.The GeO_(2)/Zn-HPW/TiO_(2) photocatalyst exhibits a broad absorption edge extending to 1000 nm,as well as high-efficiency photoelectric conversion and electron transfer,which allow the GeO_(2)/Zn-HPW/TiO_(2)-coated POHFs to provide high light intensity to promote biofilm growth.The resulting high photocatalytic activity rapidly and stably reduces the toxicity and increases the biodegradability of tetracycline-containing wastewater.The biofilm enriched with Salinarimonas,Coelastrella sp.,and Rhizobium,maintains its activity for the rapid photocatalytic degradation and biotransformation of intermediates to generate the O_(2) required for photocatalysis.Overall,the synergistic photocatalytic biofilm system developed herein provides an effective and efficient approach for the rapid degradation and conversion of water containing high concentrations of tetracycline.
基金Acknowledgments The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (51576021, 51222603, 51276208 and 51325602) and the National High-Tech R&D Program of China (2015AA043503).
文摘In this study, a membraneless, monolithic micro photocatalytic fuel cell with an air-breathing cathode was developed for simultaneous wastewater treatment and electricity generation. In this newly-developed micro photocatalytic fuel cell, the photoanode and cathode were arranged with a shoulder-to-shoulder design, forming two planar electrodes. Such design offers several advantages of enhanced mass transfer, uniform light distribution, short light transfer path, membrane elimination and easy fabrication, integration, and compatibility with other microdevices. The performance of this type fuel cell was evaluated by using methanol as a model pollutant under the alkaline condition. Experimental results indicated the developed micro photocatalytic fuel cell was able to show good photo-response to the illumination and satisfactory performance as well as durability. Parametric study on the cell performance was also performed. It was found that increasing the light intensity, methanol concentration andKOH concentration could improve the cell performance. But for the effect of the liquid flow rate, it was shown that the cell performance firstly increased with increasing the liquid flow rate and then decreased with further increasing the liquid flow rate. This study not only opens a new avenue for the design of the micro photocatalytic fuel cell but also is helpful for the optimization of the operating conditions.