Bud dormancy is a complex physiological process of perennial woody plants living in temperate regions,and it can be affected by various phytohormones.Cytokinin oxidase/dehydrogenases(CKXs)are a group of enzymes essent...Bud dormancy is a complex physiological process of perennial woody plants living in temperate regions,and it can be affected by various phytohormones.Cytokinin oxidase/dehydrogenases(CKXs)are a group of enzymes essential for maintaining cytokinin homeostasis,yet a comprehensive analysis of these enzymes in peach remains lacking.Here,a total of 51 CKX members from different species,including six from peach,eleven from apple,nine from poplar,seven from Arabidopsis,eight from strawberry,and ten from rice,were identified using the Simple HMM Search tool of TBtools and a BLASTP program and classified into four groups using phylogenetic analysis.Conserved motif and gene structure analysis of these 51 CKX members showed that 10 conserved motifs were identified,and each CKX gene contained at least two introns.Cis-element analysis of PpCKXs showed that all PpCKX genes have light-responsive elements and at least one hormone-responsive element.The changed relative expression levels of six PpCKX genes in peach buds from endodormancy to bud-break were observed by qRT-PCR.Among them,the expression trend of PpCKX6 was almost opposite that of PpEBB1,a positive bud-break regulator in woody plants,around the bud-break stage.Y1H,EMSA,and dual-luciferase assays indicated that PpEBB1negatively regulated PpCKX6 through direct binding to a GCC box-like element located in the promoter region of PpCKX6.In addition,a transient assay showed that overexpression of PpCKX6 delayed the bud-break of peach.These results indicate that the PpCKX genes play an essential role in the dormancy-regrowth process,and Pp CKX6may act downstream of PpEBB1 directly to regulate the bud-break process,which further improves the hormoneregulatory network of dormancy-regrowth of woody plants,and provides new insights for molecular breeding and genetic engineering of peach.展开更多
The structure and performance of membrane materials are very important to the efficient and stable operation in membrane drinking water purification technology. Potassium permanganate(KMnO_4), which can change the cha...The structure and performance of membrane materials are very important to the efficient and stable operation in membrane drinking water purification technology. Potassium permanganate(KMnO_4), which can change the characteristics of organic matters and control membrane surface fouling, has been widely used as pre-oxidant in the front of membrane drinking water process. This study investigates the evolution of membrane surface structure and performance when polyvinylidene fluoride(PVDF) and polyethersulfone(PES) were exposed to10, 100 and 1000 mg·L^(-1) KMnO_4 solution for 6 and 12 d, respectively. The aged membrane physicochemical characteristics such as membrane surface morphology, chemical composition, hydrophilicity, porosity and zeta potential were evaluated by modern analytical and testing instruments. The anti-fouling property of membrane surface was also investigated by the filtration-backwash experiment. The results indicated that the different concentrations and exposure time of KMnO_4 led to a different variation on PVDF and PES membrane surface structure and performance, which could further affect the membrane separation performance and the membrane fouling behaviors. The membrane surface pore size and porosity increased due to the dislodgment and degradation of membrane additive(PVP), which improved membrane permeability and enhanced the adsorption and deposition of pollutants in the membrane pores. With the increase of exposure time, the membrane surface pore size and porosity reduced for the reactions of chain scission and crosslinking on membrane materials, and the backwashing efficiency declined, leading to a more serious irreversible fouling. Compared with PVDF membranes, the formation of sulfonic group for PES membranes increased the negative charge on membrane surface due to the oxidation of KMnO_4. The present study provides some new insights for the regulation of the pre-oxidant dose and the selection of the membrane materials in KMnO_4 pre-oxidation combined with membrane filtration system.展开更多
Pretreatments of influents using bimetallic catalytic biofilter(BC-biofilter)can help reduce transmembrane pressures.For ultrafiltration membranes coupled with a conventional biofilter pretreatment,the cake layer resi...Pretreatments of influents using bimetallic catalytic biofilter(BC-biofilter)can help reduce transmembrane pressures.For ultrafiltration membranes coupled with a conventional biofilter pretreatment,the cake layer resistance accounts for 25.0%of the total resistance.However,for those coupled with BC-biofilter pretreatment,the cake layer resistance accounts only for 12.5%of the total resistance.Confocal laser scanning microscopy is employed to determine the porosity of cake layer.It is found that ultrafiltration membranes with BC-biofilter pretreatment show a cake layer porosity of up to 0.56 or greater,whereas those with a conventional biofilter pretreatment exhibit a cake layer porosity of only 0.36.This is because micro-flocculation occurs in the effluents of BC-biofilter.The flocs generated through flocculation deposit on membrane surfaces to create highly porous cake layer.Moreover,catalytic reduction can increase the zeta potentials of the biofilter effluents.This makes the deposition of colloidal particles and flocs on membrane surfaces difficult under electrostatic repulsion.Simultaneously,micro-flocculation after BC-biofilter pretreatment can remove colloidal particles with particle sizes of200–350 nm in water.This can effectively prevent the blockage of ultrafiltration membrane pores.Furthermore,compared to conventional biofilter,BC-biofilter pretreatment can more effectively reduce the number of colloidal particles and the van der Waals forces of ultrafiltration membranes.They can also change the action directions of electric double layers and thereby mitigate ultrafiltration membrane fouling.展开更多
A series of complexes of europium (III)/gadolinium (III) with 2-thienyltrifluoroacetonate (HTTA), terephthalic acid (TPA) and phenanthroline (Phen) were synthesized by coprecipitation. The resulting complexes includin...A series of complexes of europium (III)/gadolinium (III) with 2-thienyltrifluoroacetonate (HTTA), terephthalic acid (TPA) and phenanthroline (Phen) were synthesized by coprecipitation. The resulting complexes including Eu2(TPA)(TTA)4Phen2, Eu1.4Gd0.6(TPA)(TTA)4Phen2, Eu1.0Gd1.0(TPA)(TTA)4Phen2 and Eu0.8Gd1.2(TPA)(TTA)4Phen2 were characterized by elemental analysis, IR spectroscopy and thermal stability analysis. The results of analysis indicate that the complexes obtained have similar binuclear structure with each other. The thermal stability analysis indicates that the complexes Eu2(TPA)(TTA)4Phen2and Eu1.0Gd1.0(TPA)(TTA)4Phen2 possess good thermal stability, which melt at ~241°C and decompose at ~370°C - 430°C corresponding to the formation of the complexes. The fluorescence spectra of Eu2(1-x)Gd2x(TPA)(TTA)4Phen2 (x = 0 - 1) complex powders and their doped silica gels were studied. The co-fluorescence effect of Gd3+ ions in complex powders is different from that of their doped silica gels. The optimum concentration of Gd3+ for complex powders and their doped silica gels is 0.5 and 0.3 (molar fraction), respectively. The co-fluorescence distinction of Gd3+ ions for complex powders and their doped silica gels is preferably interpreted from the proposed binuclear structure together with monomolecular compositions of the complexes for the first time. Both intermolecular energy transfer and intra molecular energy transfer in cross binuclear monomolecular EuGd(TPA)(TTA)4Phen2 are thought to be responsible for the co-fluorescence effect of the complex powders;yet only the latter is thought to be responsible for the co-fluorescence effect in silica gels, for the complex molecules in this case are isolated from each other.展开更多
The performance of supported catalysts is significantly affected by the dispersion degree of the active components on the support.In this study,citric acid(CA)was used as a modifier to prepare Al_(2)O_(3)supported Mn-...The performance of supported catalysts is significantly affected by the dispersion degree of the active components on the support.In this study,citric acid(CA)was used as a modifier to prepare Al_(2)O_(3)supported Mn-Ce oxides(Mn-Ce/CA-Al_(2)O_(3))by the impregnation-calcination method.The characterization results showed that adding citric acid enhanced the dispersion of Mn-Ce oxides on the support,rendering Mn-Ce/CA-Al_(2)O_(3)with a larger specific surface area and abundant surface hydroxyl groups,thereby providing more reaction sites for catalytic ozonation.The Mn-Ce/CA-Al_(2)O_(3)exhibited excellent catalytic ozonation performance in degrading Reactive Black 5(RB5)dye.It achieved nearly complete decolorization of RB5 within 60 min,with a COD removal efficiency of 60%,which was superior to the sole ozonation(30%).Furthermore,the Mn-Ce/CA-Al_(2)O_(3)system demonstrated significant degradation of RB5 over a wide pH range of 3e11.Based on the XPS and EPR analysis results,a preliminary mechanism of catalytic ozonation over the Mn-Ce/CA-Al_(2)O_(3)was proposed.The redox cycle of Mn^(3+)/Mn^(4+)and Ce^(3+)/Ce^(4+)effectively accelerated the electron transfer process,thus promoting the generation of reactive oxygen species(ROS)and improving the degradation of RB5.Meanwhile,the Mn-Ce/CA-Al_(2)O_(3)exhibited superior catalytic stability and effective treatment capabilities for real dye wastewater.展开更多
Although it is well established that nitrogen(N)deficiency induces leaf senescence,the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown.Here,we show that an abscisic acid(ABA)-respon...Although it is well established that nitrogen(N)deficiency induces leaf senescence,the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown.Here,we show that an abscisic acid(ABA)-responsive NAC transcription factor(TF)is involved in N deficiency-induced leaf senescence.The overexpression of MdNAC4 led to increased ABA levels in apple calli by directly activating the transcription of the ABA biosynthesis gene MdNCED2.In addition,MdNAC4 overexpression promoted N deficiency-induced leaf senescence.Further investigation showed that MdNAC4 directly bound the promoter of the senescence-associated gene(SAG)MdSAG39 and upregulated its expression.Interestingly,the function of MdNAC4 in promoting N deficiency-induced leaf senescence was enhanced in the presence of ABA.Furthermore,we identified an interaction between the ABA receptor protein MdPYL4 and the MdNAC4 protein.Moreover,MdPYL4 showed a function similar to that of MdNAC4 in ABA-mediated N deficiencyinduced leaf senescence.These findings suggest that ABA plays a central role in N deficiency-induced leaf senescence and that MdPYL4 interacts with MdNAC4 to enhance the response of the latter to N deficiency,thus promoting N deficiency-induced leaf senescence.In conclusion,our results provide new insight into how MdNAC4 regulates N deficiency-induced leaf senescence.展开更多
基金supported by the National Natural Science Foundation of China(32302509)the Weifang University Doctoral Research Launch Fund,China(2022BS18)the National Natural Science Foundation of China(32072518)。
文摘Bud dormancy is a complex physiological process of perennial woody plants living in temperate regions,and it can be affected by various phytohormones.Cytokinin oxidase/dehydrogenases(CKXs)are a group of enzymes essential for maintaining cytokinin homeostasis,yet a comprehensive analysis of these enzymes in peach remains lacking.Here,a total of 51 CKX members from different species,including six from peach,eleven from apple,nine from poplar,seven from Arabidopsis,eight from strawberry,and ten from rice,were identified using the Simple HMM Search tool of TBtools and a BLASTP program and classified into four groups using phylogenetic analysis.Conserved motif and gene structure analysis of these 51 CKX members showed that 10 conserved motifs were identified,and each CKX gene contained at least two introns.Cis-element analysis of PpCKXs showed that all PpCKX genes have light-responsive elements and at least one hormone-responsive element.The changed relative expression levels of six PpCKX genes in peach buds from endodormancy to bud-break were observed by qRT-PCR.Among them,the expression trend of PpCKX6 was almost opposite that of PpEBB1,a positive bud-break regulator in woody plants,around the bud-break stage.Y1H,EMSA,and dual-luciferase assays indicated that PpEBB1negatively regulated PpCKX6 through direct binding to a GCC box-like element located in the promoter region of PpCKX6.In addition,a transient assay showed that overexpression of PpCKX6 delayed the bud-break of peach.These results indicate that the PpCKX genes play an essential role in the dormancy-regrowth process,and Pp CKX6may act downstream of PpEBB1 directly to regulate the bud-break process,which further improves the hormoneregulatory network of dormancy-regrowth of woody plants,and provides new insights for molecular breeding and genetic engineering of peach.
基金Supported by the National Natural Science Foundation of China(51578374,51678410)Higher Education Science and Technology Development Foundation Planning Project of Tianjin,China(20140517)
文摘The structure and performance of membrane materials are very important to the efficient and stable operation in membrane drinking water purification technology. Potassium permanganate(KMnO_4), which can change the characteristics of organic matters and control membrane surface fouling, has been widely used as pre-oxidant in the front of membrane drinking water process. This study investigates the evolution of membrane surface structure and performance when polyvinylidene fluoride(PVDF) and polyethersulfone(PES) were exposed to10, 100 and 1000 mg·L^(-1) KMnO_4 solution for 6 and 12 d, respectively. The aged membrane physicochemical characteristics such as membrane surface morphology, chemical composition, hydrophilicity, porosity and zeta potential were evaluated by modern analytical and testing instruments. The anti-fouling property of membrane surface was also investigated by the filtration-backwash experiment. The results indicated that the different concentrations and exposure time of KMnO_4 led to a different variation on PVDF and PES membrane surface structure and performance, which could further affect the membrane separation performance and the membrane fouling behaviors. The membrane surface pore size and porosity increased due to the dislodgment and degradation of membrane additive(PVP), which improved membrane permeability and enhanced the adsorption and deposition of pollutants in the membrane pores. With the increase of exposure time, the membrane surface pore size and porosity reduced for the reactions of chain scission and crosslinking on membrane materials, and the backwashing efficiency declined, leading to a more serious irreversible fouling. Compared with PVDF membranes, the formation of sulfonic group for PES membranes increased the negative charge on membrane surface due to the oxidation of KMnO_4. The present study provides some new insights for the regulation of the pre-oxidant dose and the selection of the membrane materials in KMnO_4 pre-oxidation combined with membrane filtration system.
基金financially supported by the National Natural Science Foundation of China(No.51638011,No.51678410,No.51878448,No.51578374)National Program on Key Research Project[No.YS2017YFGH000386]+1 种基金Tianjin Science and Technology Plan Project[No.16PTGCCX00070]the support of Tianjin Education Council,the Key of Science and Technology Plan Project(No.2019ZD06)。
文摘Pretreatments of influents using bimetallic catalytic biofilter(BC-biofilter)can help reduce transmembrane pressures.For ultrafiltration membranes coupled with a conventional biofilter pretreatment,the cake layer resistance accounts for 25.0%of the total resistance.However,for those coupled with BC-biofilter pretreatment,the cake layer resistance accounts only for 12.5%of the total resistance.Confocal laser scanning microscopy is employed to determine the porosity of cake layer.It is found that ultrafiltration membranes with BC-biofilter pretreatment show a cake layer porosity of up to 0.56 or greater,whereas those with a conventional biofilter pretreatment exhibit a cake layer porosity of only 0.36.This is because micro-flocculation occurs in the effluents of BC-biofilter.The flocs generated through flocculation deposit on membrane surfaces to create highly porous cake layer.Moreover,catalytic reduction can increase the zeta potentials of the biofilter effluents.This makes the deposition of colloidal particles and flocs on membrane surfaces difficult under electrostatic repulsion.Simultaneously,micro-flocculation after BC-biofilter pretreatment can remove colloidal particles with particle sizes of200–350 nm in water.This can effectively prevent the blockage of ultrafiltration membrane pores.Furthermore,compared to conventional biofilter,BC-biofilter pretreatment can more effectively reduce the number of colloidal particles and the van der Waals forces of ultrafiltration membranes.They can also change the action directions of electric double layers and thereby mitigate ultrafiltration membrane fouling.
文摘A series of complexes of europium (III)/gadolinium (III) with 2-thienyltrifluoroacetonate (HTTA), terephthalic acid (TPA) and phenanthroline (Phen) were synthesized by coprecipitation. The resulting complexes including Eu2(TPA)(TTA)4Phen2, Eu1.4Gd0.6(TPA)(TTA)4Phen2, Eu1.0Gd1.0(TPA)(TTA)4Phen2 and Eu0.8Gd1.2(TPA)(TTA)4Phen2 were characterized by elemental analysis, IR spectroscopy and thermal stability analysis. The results of analysis indicate that the complexes obtained have similar binuclear structure with each other. The thermal stability analysis indicates that the complexes Eu2(TPA)(TTA)4Phen2and Eu1.0Gd1.0(TPA)(TTA)4Phen2 possess good thermal stability, which melt at ~241°C and decompose at ~370°C - 430°C corresponding to the formation of the complexes. The fluorescence spectra of Eu2(1-x)Gd2x(TPA)(TTA)4Phen2 (x = 0 - 1) complex powders and their doped silica gels were studied. The co-fluorescence effect of Gd3+ ions in complex powders is different from that of their doped silica gels. The optimum concentration of Gd3+ for complex powders and their doped silica gels is 0.5 and 0.3 (molar fraction), respectively. The co-fluorescence distinction of Gd3+ ions for complex powders and their doped silica gels is preferably interpreted from the proposed binuclear structure together with monomolecular compositions of the complexes for the first time. Both intermolecular energy transfer and intra molecular energy transfer in cross binuclear monomolecular EuGd(TPA)(TTA)4Phen2 are thought to be responsible for the co-fluorescence effect of the complex powders;yet only the latter is thought to be responsible for the co-fluorescence effect in silica gels, for the complex molecules in this case are isolated from each other.
基金supported by the National Key Research and Development Program(2023YFC3207003)the National Natural Science Foundation of China(51878448).
文摘The performance of supported catalysts is significantly affected by the dispersion degree of the active components on the support.In this study,citric acid(CA)was used as a modifier to prepare Al_(2)O_(3)supported Mn-Ce oxides(Mn-Ce/CA-Al_(2)O_(3))by the impregnation-calcination method.The characterization results showed that adding citric acid enhanced the dispersion of Mn-Ce oxides on the support,rendering Mn-Ce/CA-Al_(2)O_(3)with a larger specific surface area and abundant surface hydroxyl groups,thereby providing more reaction sites for catalytic ozonation.The Mn-Ce/CA-Al_(2)O_(3)exhibited excellent catalytic ozonation performance in degrading Reactive Black 5(RB5)dye.It achieved nearly complete decolorization of RB5 within 60 min,with a COD removal efficiency of 60%,which was superior to the sole ozonation(30%).Furthermore,the Mn-Ce/CA-Al_(2)O_(3)system demonstrated significant degradation of RB5 over a wide pH range of 3e11.Based on the XPS and EPR analysis results,a preliminary mechanism of catalytic ozonation over the Mn-Ce/CA-Al_(2)O_(3)was proposed.The redox cycle of Mn^(3+)/Mn^(4+)and Ce^(3+)/Ce^(4+)effectively accelerated the electron transfer process,thus promoting the generation of reactive oxygen species(ROS)and improving the degradation of RB5.Meanwhile,the Mn-Ce/CA-Al_(2)O_(3)exhibited superior catalytic stability and effective treatment capabilities for real dye wastewater.
基金Open access funding provided by Shanghai Jiao Tong Universityfunded by Shandong Province Major Science and Technology Innovation Project(2018CXGC0209)+1 种基金Shandong Provincial Fruit Industry Technology System-Cultivation and Soil Fertilization Post(SDAIT-06-04)Natural Science Foundation of Shandong Provincial(ZR2020ZD18).
文摘Although it is well established that nitrogen(N)deficiency induces leaf senescence,the molecular mechanism of N deficiency-induced leaf senescence remains largely unknown.Here,we show that an abscisic acid(ABA)-responsive NAC transcription factor(TF)is involved in N deficiency-induced leaf senescence.The overexpression of MdNAC4 led to increased ABA levels in apple calli by directly activating the transcription of the ABA biosynthesis gene MdNCED2.In addition,MdNAC4 overexpression promoted N deficiency-induced leaf senescence.Further investigation showed that MdNAC4 directly bound the promoter of the senescence-associated gene(SAG)MdSAG39 and upregulated its expression.Interestingly,the function of MdNAC4 in promoting N deficiency-induced leaf senescence was enhanced in the presence of ABA.Furthermore,we identified an interaction between the ABA receptor protein MdPYL4 and the MdNAC4 protein.Moreover,MdPYL4 showed a function similar to that of MdNAC4 in ABA-mediated N deficiencyinduced leaf senescence.These findings suggest that ABA plays a central role in N deficiency-induced leaf senescence and that MdPYL4 interacts with MdNAC4 to enhance the response of the latter to N deficiency,thus promoting N deficiency-induced leaf senescence.In conclusion,our results provide new insight into how MdNAC4 regulates N deficiency-induced leaf senescence.