Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
MXenes,a family of two-dimensional(2D)materials,exhibit peculiar microwave-absorbing behaviors due to their unique chemical composition and structure.Although laminated Ti_(3)C_(2)T_(x) MXenes with a multilayer struct...MXenes,a family of two-dimensional(2D)materials,exhibit peculiar microwave-absorbing behaviors due to their unique chemical composition and structure.Although laminated Ti_(3)C_(2)T_(x) MXenes with a multilayer structure have been used for microwave absorption,real 2D MXenes with a single-layer structure have not yet been investigated.Here,the electromagnetic wave response behavior of single-layer Ti_(3)C_(2)T_(x) MXenes was explored in detail.The permittivity of Ti_(3)C_(2)T_(x) MXene rises dramatically with an increase in filler loading,and Ti_(3)C_(2)T_(x) MXene features a distinct dielectric response wherein dipolar polarization and interfacial polarization makes a greater contribution at low filler loading;conductive loss becomes more prominent at high filler loading.Versus laminated Ti_(3)C_(2)T_(x) MXene,single-layer Ti_(3)C_(2)T_(x) MXene delivers superior absorbing capability:The RLminvalue of SL-Ti_(3)C_(2)T_(x)-22%reaches-43.5 d B at 6.5 GHz,and a broad EAB of 6.88 GHz can be attained at a thickness of 1.8 mm due to enhanced dipolar polarization,interfacial polarization,and conductive loss.This work is of great significance in guiding the future development of MXene-based absorbers.展开更多
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2021JQ-190,2020JM-82)the Fundamental Research Funds for the Central Universities(No.QTZX2146)。
文摘MXenes,a family of two-dimensional(2D)materials,exhibit peculiar microwave-absorbing behaviors due to their unique chemical composition and structure.Although laminated Ti_(3)C_(2)T_(x) MXenes with a multilayer structure have been used for microwave absorption,real 2D MXenes with a single-layer structure have not yet been investigated.Here,the electromagnetic wave response behavior of single-layer Ti_(3)C_(2)T_(x) MXenes was explored in detail.The permittivity of Ti_(3)C_(2)T_(x) MXene rises dramatically with an increase in filler loading,and Ti_(3)C_(2)T_(x) MXene features a distinct dielectric response wherein dipolar polarization and interfacial polarization makes a greater contribution at low filler loading;conductive loss becomes more prominent at high filler loading.Versus laminated Ti_(3)C_(2)T_(x) MXene,single-layer Ti_(3)C_(2)T_(x) MXene delivers superior absorbing capability:The RLminvalue of SL-Ti_(3)C_(2)T_(x)-22%reaches-43.5 d B at 6.5 GHz,and a broad EAB of 6.88 GHz can be attained at a thickness of 1.8 mm due to enhanced dipolar polarization,interfacial polarization,and conductive loss.This work is of great significance in guiding the future development of MXene-based absorbers.