The spike architecture of wheat plays a crucial role in determining grain number,making it a key trait for optimization in wheat breeding programs.In this study,we used a multi-omic approach to analyze the transcripto...The spike architecture of wheat plays a crucial role in determining grain number,making it a key trait for optimization in wheat breeding programs.In this study,we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages,revealing co-ordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition.We constructed a core transcriptional regulatory network(TRN)that drives wheat spike formation and experimentally validated a multi-layer regulatorymodule involving TaSPL15,TaAGLG1,and TaFUL2.By integrating the TRN with genome-wide association studies,we identified 227 transcription factors,including 42 with known functions and 185 with unknown functions.Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time,such as TaMYC2-A1,TaMYB30-A1,and TaWRKY37-A1.Of particular interest,TaMYB30-A1,downstream of and repressed by WFzP,was found to regulate fertile spikelet number.Notably,the excellent haplotype of TaMYB30-A1,which contains a C allele at the WFzP binding site,was enriched during wheat breeding improvement in China,leading to improved agronomic traits.Finally,we constructed a free and open access Wheat Spike Multi-Omic Database(http://39.98.48.156:8800/#/).Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development,with practical value forwheat breeding.展开更多
Winter plants rely on vernalization,a crucial process for adapting to cold conditions and ensuring successful reproduction.However,understanding the role of histone modifications in guiding the vernalization process i...Winter plants rely on vernalization,a crucial process for adapting to cold conditions and ensuring successful reproduction.However,understanding the role of histone modifications in guiding the vernalization process in winter wheat remains limited.In this study,we investigated the transcriptome and chromatin dynamics in the shoot apex throughout the life cycle of winter wheat in the field.Two core histone modifications,H3K27me3 and H3K36me3,exhibited opposite patterns on the key vernalization gene VERNALIZATION1(VRN1),correlating with its induction during cold exposure.Moreover,the H3K36me3 level remained high at VRN1 after cold exposure,which may maintain its active state.Mutations in FERTILIZATION-INDEPENDENT ENDOSPERM(TaFIE)and SET DOMAIN GROUP 8/EARLY FLOWERING IN SHORT DAYS(TaSDG8/TaEFS),components of the writer complex for H3K27me3 and H3K36me3,respectively,affected flowering time.Intriguingly,VRN1 lost its high expression after the cold exposure memory in the absence of H3K36me3.During embryo development,VRN1 was silenced with the removal of active histone modifications in both winter and spring wheat,with selective restoration of H3K27me3 in winter wheat.The mutant of Tafie-cr-87,a component of H3K27me3“writer”complex,did not influence the silence of VRN1during embryo development,but rather attenuated the cold exposure requirement of winter wheat.Integrating gene expression with H3K27me3 and H3K36me3 patterns identified potential regulators of flowering.This study unveils distinct roles of H3K27me3 and H3K36me3 in controlling vernalization response,maintenance,and resetting in winter wheat.展开更多
Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions.Amid water scarcity,plants activate drought response signaling,yet the delicate balance between dro...Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions.Amid water scarcity,plants activate drought response signaling,yet the delicate balance between drought tolerance and development remains unclear.Through genome-wide association studies and transcriptome profiling,we identified a wheat atypical basic helix-loop-helix(b HLH)transcription factor(TF),Tab HLH27-A1,as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat.Tab HLH27-A1/B1/D1 knockout reduced wheat drought tolerance,yield,and water use efficiency(WUE).Tab HLH27-A1 exhibited rapid induction with polyethylene glycol(PEG)treatment,gradually declining over days.It activated stress response genes such as Ta CBL8-B1 and Ta CPI2-A1 while inhibiting root growth genes like Ta SH15-B1 and Ta WRKY70-B1 under short-term PEG stimulus.The distinct transcriptional regulation of Tab HLH27-A1 involved diverse interacting factors such as Ta ABI3-D1 and Tab ZIP62-D1.Natural variations of Tab HLH27-A1influence its transcriptional responses to drought stress,with Tab HLH27-A1^(Hap-II)associated with stronger drought tolerance,larger root system,more spikelets,and higher WUE in wheat.Significantly,the excellent Tab HLH27-A1^(Hap-II)was selected during the breeding process in China,and introgression of Tab HLH27-A1^(Hap-II)allele improved drought tolerance and grain yield,especially under water-limited conditions.Our study highlights Tab HLH27-A1's role in balancing root growth and drought tolerance,providing a genetic manipulation locus for enhancing WUE in wheat.展开更多
Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestic...Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat,and the genetic basis of agronomically important traits,which promote the breeding of elite varieties.In this review,we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield,end-use traits,flowering regulation,nutrient use efficiency,and biotic and abiotic stress responses,and various breeding strategies that contributed mainly by Chinese scientists.Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools,highthroughput phenotyping platforms,sequencing-based cloning strategies,high-efficiency genetic transformation systems,and speed-breeding facilities.These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process,ultimately contributing to more sustainable agriculture in China and throughout the world.展开更多
Intracranial pressure(ICP)is one of the most important indexes in neurosurgery.It is essential for doctors to determine the numeric value and changes of ICP,whether before or after an operation.Although external ventr...Intracranial pressure(ICP)is one of the most important indexes in neurosurgery.It is essential for doctors to determine the numeric value and changes of ICP,whether before or after an operation.Although external ventricular drainage(EVD)is the gold standard for monitoring ICP,more and more novel monitoring methods are being applied clinically.Invasive wired ICP monitoring is still the most commonly used in practice.Meanwhile,with the rise and development of various novel technologies,non-invasive types and invasive wireless types are gradually being used clinically or in the testing phase,as a complimentary approach of ICP management.By choosing appropriate monitoring methods,clinical neurosurgeons are able to obtain ICP values safely and effectively under particular conditions.This article introduces diverse monitoring methods and compares the advantages and disadvantages of different monitoring methods.Moreover,this review may enable clinical neurosurgeons to have a broader view of ICP monitoring.展开更多
Wheat is the most widely grown crop globally,providing 20%of the daily consumed calories and protein content around the world.With the growing global population and frequent occurrence of extreme weather caused by cli...Wheat is the most widely grown crop globally,providing 20%of the daily consumed calories and protein content around the world.With the growing global population and frequent occurrence of extreme weather caused by climate change,ensuring adequate wheat production is essential for food security.The archi-tecture of the inflorescence plays a crucial role in determining the grain number and size,which is a key trait for improving yield.Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices.Here,we summarize the genetic regulation network governing wheat spike formation,the strategies used for identifying and studying the key factors affecting spike architecture,and the progress made in breeding applications.Additionally,we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.展开更多
A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency...A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding.In this study,we created a library for KN9204,a popular wheat variety in northern China,with a reference genome,transcriptome,and epigenome of different tissues,using ethyl methyl sulfonate(EMS)mutagenesis.This library contains a vast developmental diversity of critical tissues and transition stages.Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79%of coding genes had mutations,and each line had an average of 1383 EMS-type SNPs.We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1,Q,TaTB1,and WFZP.We tested 100 lines with severemutations in 80 NAC transcription factors(TFs)under drought and salinity stress and identified 13 lines with altered sensitivity.Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress,including SNAC1,DREB2B,CML16,and ZFP182,factors known to respond to abiotic stress.Thus,we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat.展开更多
Background:Invasive sphenoid sinus aspergillosis is a rare but life-threatening condition usually found in immunocompromised patients.When involving cavernous sinus and surrounding structures,patients are frequently m...Background:Invasive sphenoid sinus aspergillosis is a rare but life-threatening condition usually found in immunocompromised patients.When involving cavernous sinus and surrounding structures,patients are frequently misdiagnosed with a neoplasm or sellar abscess.Timely diagnosis and intervention are crucial to patients’outcomes.The objective of this study is to review cases of invasive sphenoid sinus aspergillosis to describe disease manifestations,imaging features,treatment,and outcome.Case presentation:We describe four patients with invasive sphenoid sinus aspergillosis misdiagnosed as sellar tumors preoperatively.The mass was completely removed in three patients and partially removed in one patient microscopically.Pathological examinations confirmed Aspergillus in all cases.All four patients received anti-fungal agents postoperatively.There was no recurrence at the time of each patient’s follow-up date.One patient with complete resection was lost to follow-up while the other three patients’neurologic function improved.Additionally,we performed a systematic review regarding invasive sphenoid sinus aspergillosis of existing English literature.Conclusion:With regard to clinical symptoms,headache,vision impairment,and ophthalmoplegia were observed in over half of the patients in the literature.A sellar mass with bone destruction on CT and involvement of cavernous sinus is highly suggestive of invasive fungal sphenoid sinusitis.Immediate surgical removal of the lesion is recommended for invasive sphenoid sinus aspergillosis to preserve nerve function and increase the likelihood of survival.展开更多
基金supported by the National Natural Science Foundation of China(31921005)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24010204)+1 种基金the National Key Research and Development Program of China(2021YFD1201500)the Major Basic Research Program of Shandong Natural Science Foundation of China(ZR2019ZD15).
文摘The spike architecture of wheat plays a crucial role in determining grain number,making it a key trait for optimization in wheat breeding programs.In this study,we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages,revealing co-ordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition.We constructed a core transcriptional regulatory network(TRN)that drives wheat spike formation and experimentally validated a multi-layer regulatorymodule involving TaSPL15,TaAGLG1,and TaFUL2.By integrating the TRN with genome-wide association studies,we identified 227 transcription factors,including 42 with known functions and 185 with unknown functions.Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time,such as TaMYC2-A1,TaMYB30-A1,and TaWRKY37-A1.Of particular interest,TaMYB30-A1,downstream of and repressed by WFzP,was found to regulate fertile spikelet number.Notably,the excellent haplotype of TaMYB30-A1,which contains a C allele at the WFzP binding site,was enriched during wheat breeding improvement in China,leading to improved agronomic traits.Finally,we constructed a free and open access Wheat Spike Multi-Omic Database(http://39.98.48.156:8800/#/).Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development,with practical value forwheat breeding.
基金supported by National Natural Science Foundation(31970529)Beijing Natural Science Foundation Outstanding Youth Project(JQ23026)+1 种基金National Key Research and Development Program of China(2021YFD1201500)the Major Basic Research Program of Shandong Natural Science Foundation(ZR2019ZD15)。
文摘Winter plants rely on vernalization,a crucial process for adapting to cold conditions and ensuring successful reproduction.However,understanding the role of histone modifications in guiding the vernalization process in winter wheat remains limited.In this study,we investigated the transcriptome and chromatin dynamics in the shoot apex throughout the life cycle of winter wheat in the field.Two core histone modifications,H3K27me3 and H3K36me3,exhibited opposite patterns on the key vernalization gene VERNALIZATION1(VRN1),correlating with its induction during cold exposure.Moreover,the H3K36me3 level remained high at VRN1 after cold exposure,which may maintain its active state.Mutations in FERTILIZATION-INDEPENDENT ENDOSPERM(TaFIE)and SET DOMAIN GROUP 8/EARLY FLOWERING IN SHORT DAYS(TaSDG8/TaEFS),components of the writer complex for H3K27me3 and H3K36me3,respectively,affected flowering time.Intriguingly,VRN1 lost its high expression after the cold exposure memory in the absence of H3K36me3.During embryo development,VRN1 was silenced with the removal of active histone modifications in both winter and spring wheat,with selective restoration of H3K27me3 in winter wheat.The mutant of Tafie-cr-87,a component of H3K27me3“writer”complex,did not influence the silence of VRN1during embryo development,but rather attenuated the cold exposure requirement of winter wheat.Integrating gene expression with H3K27me3 and H3K36me3 patterns identified potential regulators of flowering.This study unveils distinct roles of H3K27me3 and H3K36me3 in controlling vernalization response,maintenance,and resetting in winter wheat.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24010204)National Key Research and Development Program of China(2021YFD1201500)+5 种基金Hebei Natural Science Foundation(C2021205013)Full-time introduction of high-end talent research project(2020HBQZYC004)the National Natural Sciences Foundation of China(32100492,U22A6009,32072004)Beijing Natural Science Foundation Outstanding Youth Project(JQ23026)the Major Basic Research Program of Shandong Natural Science Foundation(ZR2019ZD15)the Seed Science and Technology Innovation Team Project of Shijiazhuang(232490472A).
文摘Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions.Amid water scarcity,plants activate drought response signaling,yet the delicate balance between drought tolerance and development remains unclear.Through genome-wide association studies and transcriptome profiling,we identified a wheat atypical basic helix-loop-helix(b HLH)transcription factor(TF),Tab HLH27-A1,as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat.Tab HLH27-A1/B1/D1 knockout reduced wheat drought tolerance,yield,and water use efficiency(WUE).Tab HLH27-A1 exhibited rapid induction with polyethylene glycol(PEG)treatment,gradually declining over days.It activated stress response genes such as Ta CBL8-B1 and Ta CPI2-A1 while inhibiting root growth genes like Ta SH15-B1 and Ta WRKY70-B1 under short-term PEG stimulus.The distinct transcriptional regulation of Tab HLH27-A1 involved diverse interacting factors such as Ta ABI3-D1 and Tab ZIP62-D1.Natural variations of Tab HLH27-A1influence its transcriptional responses to drought stress,with Tab HLH27-A1^(Hap-II)associated with stronger drought tolerance,larger root system,more spikelets,and higher WUE in wheat.Significantly,the excellent Tab HLH27-A1^(Hap-II)was selected during the breeding process in China,and introgression of Tab HLH27-A1^(Hap-II)allele improved drought tolerance and grain yield,especially under water-limited conditions.Our study highlights Tab HLH27-A1's role in balancing root growth and drought tolerance,providing a genetic manipulation locus for enhancing WUE in wheat.
基金This work was supported by the National Natural Science Foundation of China(31788103,31970529,32125030,31921005,31961143013,32072660)the Key Research and Development Program of Ministry of Science and Technology of China(2021YFF1000200)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24010202).
文摘Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat,and the genetic basis of agronomically important traits,which promote the breeding of elite varieties.In this review,we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield,end-use traits,flowering regulation,nutrient use efficiency,and biotic and abiotic stress responses,and various breeding strategies that contributed mainly by Chinese scientists.Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools,highthroughput phenotyping platforms,sequencing-based cloning strategies,high-efficiency genetic transformation systems,and speed-breeding facilities.These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process,ultimately contributing to more sustainable agriculture in China and throughout the world.
文摘Intracranial pressure(ICP)is one of the most important indexes in neurosurgery.It is essential for doctors to determine the numeric value and changes of ICP,whether before or after an operation.Although external ventricular drainage(EVD)is the gold standard for monitoring ICP,more and more novel monitoring methods are being applied clinically.Invasive wired ICP monitoring is still the most commonly used in practice.Meanwhile,with the rise and development of various novel technologies,non-invasive types and invasive wireless types are gradually being used clinically or in the testing phase,as a complimentary approach of ICP management.By choosing appropriate monitoring methods,clinical neurosurgeons are able to obtain ICP values safely and effectively under particular conditions.This article introduces diverse monitoring methods and compares the advantages and disadvantages of different monitoring methods.Moreover,this review may enable clinical neurosurgeons to have a broader view of ICP monitoring.
基金supported by the National Key Research and Development Program of China(2021YFD1201500)the Major Basic Research Program of Shandong Natural Science Foundation(ZR2019ZD15)the National Natural Sciences Foundation of China(31970529)。
文摘Wheat is the most widely grown crop globally,providing 20%of the daily consumed calories and protein content around the world.With the growing global population and frequent occurrence of extreme weather caused by climate change,ensuring adequate wheat production is essential for food security.The archi-tecture of the inflorescence plays a crucial role in determining the grain number and size,which is a key trait for improving yield.Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices.Here,we summarize the genetic regulation network governing wheat spike formation,the strategies used for identifying and studying the key factors affecting spike architecture,and the progress made in breeding applications.Additionally,we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24010204)to J.X.,the Hebei Natural Science Foundation(C2021205013)"Full-time introduction of high-end talent research project"(2020HBQZYC004)to X.-g.L.+3 种基金the National Natural Science Foundation of China(U22A6009)to J.-m.L.the Research Program for Network Security and Information of the Chinese Academy of Sciences(CAS-WX2021SF-0109)to F.H.and J.X.the National Key Research and Developmental Program of China(2021YFD1201500)to J.X.a China Postdoctoral Science Foundation-funded project(2020M680742)to D.-z.W.
文摘A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding.In this study,we created a library for KN9204,a popular wheat variety in northern China,with a reference genome,transcriptome,and epigenome of different tissues,using ethyl methyl sulfonate(EMS)mutagenesis.This library contains a vast developmental diversity of critical tissues and transition stages.Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79%of coding genes had mutations,and each line had an average of 1383 EMS-type SNPs.We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1,Q,TaTB1,and WFZP.We tested 100 lines with severemutations in 80 NAC transcription factors(TFs)under drought and salinity stress and identified 13 lines with altered sensitivity.Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress,including SNAC1,DREB2B,CML16,and ZFP182,factors known to respond to abiotic stress.Thus,we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat.
文摘Background:Invasive sphenoid sinus aspergillosis is a rare but life-threatening condition usually found in immunocompromised patients.When involving cavernous sinus and surrounding structures,patients are frequently misdiagnosed with a neoplasm or sellar abscess.Timely diagnosis and intervention are crucial to patients’outcomes.The objective of this study is to review cases of invasive sphenoid sinus aspergillosis to describe disease manifestations,imaging features,treatment,and outcome.Case presentation:We describe four patients with invasive sphenoid sinus aspergillosis misdiagnosed as sellar tumors preoperatively.The mass was completely removed in three patients and partially removed in one patient microscopically.Pathological examinations confirmed Aspergillus in all cases.All four patients received anti-fungal agents postoperatively.There was no recurrence at the time of each patient’s follow-up date.One patient with complete resection was lost to follow-up while the other three patients’neurologic function improved.Additionally,we performed a systematic review regarding invasive sphenoid sinus aspergillosis of existing English literature.Conclusion:With regard to clinical symptoms,headache,vision impairment,and ophthalmoplegia were observed in over half of the patients in the literature.A sellar mass with bone destruction on CT and involvement of cavernous sinus is highly suggestive of invasive fungal sphenoid sinusitis.Immediate surgical removal of the lesion is recommended for invasive sphenoid sinus aspergillosis to preserve nerve function and increase the likelihood of survival.