We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across th...We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.展开更多
Background Wool fibers are valuable materials for textile industry.Typical wool fibers are divided into medullated and non-medullated types,with the former generated from primary wool follicles and the latter by eithe...Background Wool fibers are valuable materials for textile industry.Typical wool fibers are divided into medullated and non-medullated types,with the former generated from primary wool follicles and the latter by either primary or secondary wool follicles.The medullated wool is a common wool type in the ancestors of fine wool sheep before breeding.The fine wool sheep have a non-medullated coat.However,the critical period determining the type of wool follicles is the embryonic stage,which limits the phenotypic observation and variant contrast,making both selection and studies of wool type variation fairly difficult.Results During the breeding of a modern fine(MF)wool sheep population with multiple-ovulation and embryo transfer technique,we serendipitously discovered lambs with ancestral-like coarse(ALC)wool.Whole-genome rese-quencing confirmed ALC wool lambs as a variant type from the MF wool population.We mapped the significantly associated methylation locus on chromosome 4 by using whole genome bisulfite sequencing signals,and in turn identified the SOSTDC1 gene as exons hypermethylated in ALC wool lambs compare to their half/full sibling MF wool lambs.Transcriptome sequencing found that SOSTDC1 was expressed dozens of times more in ALC wool lamb skin than that of MF and was at the top of all differentially expressed genes.An analogy with the transcriptome of coarse/fine wool breeds revealed that differentially expressed genes and enriched pathways at postnatal lamb stage in ALC/MF were highly similar to those at the embryonic stage in the former.Further experiments validated that the SOSTDC1 gene was specifically highly expressed in the nucleus of the dermal papilla of primary wool follicles.Conclusion In this study,we conducted genome-wide differential methylation site association analysis on differen-tial wool type trait,and located the only CpG locus that strongly associated with primary wool follicle development.Combined with transcriptome analysis,SOSTDC1 was identified as the only gene at this locus that was specifically overexpressed in the primary wool follicle stem cells of ALC wool lamb skin.The discovery of this key gene and its epigenetic regulation contributes to understanding the domestication and breeding of fine wool sheep.展开更多
Background: Black bone sheep was first discovered in Yunnan province of China in 1970, with unique black pigmentation on the body and internal organs. Endothelin 3(EDN3) has been known as a key gene causing hyperpigme...Background: Black bone sheep was first discovered in Yunnan province of China in 1970, with unique black pigmentation on the body and internal organs. Endothelin 3(EDN3) has been known as a key gene causing hyperpigmentation in black bone chicken, the Silky fowl.Methods: In this study, EDN3 was employed as a candidate gene for regulating black color pigmentation. First,EDN3 was cloned from sheep to obtain the full-length cDNA by using the rapid amplification of cDNA ends(RACE).Genomic EDN3 was screened and a total of thirty predicted single nucleotide polymorphisms(SNPs) were genotyped for allele and genotype frequency analysis in a case-control study involving two black bone sheep populations. Genomic copy number analysis of EDN3 in sheep was conducted to measure the variation in copy number. EDN3 expression levels were observed among the groups in adult liver, lymph node, and kidney tissues, as well as embryo kidney samples. Also, among the tissues of black bone and non-black bone sheep.Results: The size of the full-length cDNA was 1,578 bp, which included 426 bp of 5′-untranslated region(5′-UTR),an open reading frame(ORF) of 639 bp encoding a protein of 212 amino acids, and a 3′-UTR of 513 bp. Genotype and allele frequencies of all the discovered SNPs were found insignificantly different in black bone and non-black bone sheep(P > 0.05). Genomic copy number analysis of EDN3 in sheep revealed no significant difference between the two sheep groups. No significant variations were found in the adult liver and kidney embryo samples. However,the expression in lymph node and kidney tissue was significantly higher in black bone sheep than that in non-black bone sheep(P < 0.05). Significant variations in the EDN3 expression levels were observed among the tissues of nonblack bone sheep.Conclusions: The findings of the present study indicate that unlike in Silky chickens, EDN3 is not responsible for hyperpigmentation but may play a key functional role in immune and excretory systems of black bone sheep.展开更多
Background: The widely observed RNA-DNA differences(RDDs) have been found to be due to nucleotide alteration by RNA editing. Canonical RNA editing(i.e., A-to-I and C-to-U editing) mediated by the adenosine deaminases ...Background: The widely observed RNA-DNA differences(RDDs) have been found to be due to nucleotide alteration by RNA editing. Canonical RNA editing(i.e., A-to-I and C-to-U editing) mediated by the adenosine deaminases acting on RNA(ADAR) family and apolipoprotein B mRNA editing catalytic polypeptide-like(APOBEC)family during the transcriptional process is considered common and essential for the development of an individual.To date, an increasing number of RNA editing sites have been reported in human, rodents, and some farm animals;however, genome-wide detection of RNA editing events in sheep has not been reported. The aim of this study was to identify RNA editing events in sheep by comparing the RNA-seq and DNA-seq data from three biological replicates of the kidney and spleen tissues.Results: A total of 607 and 994 common edited sites within the three biological replicates were identified in the ovine kidney and spleen, respectively. Many of the RDDs were specific to an individual. The RNA editing-related genes identified in the present study might be evolved for specific biological functions in sheep, such as structural constituent of the cytoskeleton and microtubule-based processes. Furthermore, the edited sites found in the ovine BLCAP and NEIL1 genes are in line with those in previous reports on the porcine and human homologs, suggesting the existence of evolutionarily conserved RNA editing sites and they may play an important role in the structure and function of genes.Conclusions: Our study is the first to investigate RNA editing events in sheep. We screened out 607 and 994 RNA editing sites in three biological replicates of the ovine kidney and spleen and annotated 164 and 247 genes in the kidney and spleen, respectively. The gene function and conservation analysis of these RNA editing-related genes suggest that RNA editing is associated with important gene function in sheep. The putative functionally important RNA editing sites reported in the present study will help future studies on the relationship between these edited sites and the genetic traits in sheep.展开更多
Detection of N-acyl homoserine lactones (AHLs) is useful for understanding quorum sensing (QS) behaviors, including biofilm formation, virulence and metabolism. For detecting AHLs and indicating the host cells in ...Detection of N-acyl homoserine lactones (AHLs) is useful for understanding quorum sensing (QS) behaviors, including biofilm formation, virulence and metabolism. For detecting AHLs and indicating the host cells in situ, we constructed the plasmid pUCGMA2T1-4 to make a dual fluorescent whole- cell biosensor based on the AhlI/R AHL system of Pseudomonas syringae pv. syringae B728a. The plasmid contains three components: constitutively expressed enptll::gfP for indicating host cells, Pahll::mcherry that produces red fluorescence in response to AHL, and the ahIR gene that encodes an AHL regulatory protein. Meanwhile, two copies of T1-4 (four tandem copies of a transcriptional terminator) were added into the plasmid to reduce background. The results showed that when the plasmid was placed into Escherichia coli, the dual fluorescence whole-cell biosensor was able to respond with red fluorescence within 6 hr to 5 × 10^-8-1 × 10^-5 mol/L of 3OC6-HSL. Bright green fluorescence indicated the host cells. Furthermore, when the plasmid was transferred to wild- type Pseudomonas PhTA125 (an AHL-producing bacterium), it also showed both green and red fluorescence. This result demonstrates that this plasmid can be used to construct whole-cell indicators that can indicate the AHL response and spatial behaviors of microbes in a mi tal niche展开更多
When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. In this paper, shock reflecti...When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. In this paper, shock reflection by large-angle wedges for compressible flow modeled by the nonlinear wave equation is studied and a global theory of existence, stability and regularity is established. Moreover, C^0,1 is the optimal regularity for the solutions across the degenerate sonic boundary.展开更多
Melanoblasts originating from neural crest cells can migrate through the mesenchyme of the developed embryo and give rise to melanocytes.Unlike the melanocytes that are confined to the integument in other vertebrates,...Melanoblasts originating from neural crest cells can migrate through the mesenchyme of the developed embryo and give rise to melanocytes.Unlike the melanocytes that are confined to the integument in other vertebrates,melanocytes in Silky Fowl can reach the ventral regions of the embryos owing to differences in gene expression in the process of melanoblasts migration.In this study,we used microarray profiling to identify differences in gene expression between White Leghorn and Silky Fowl.Differential expression of 2517 microarray probes(P<0.01,Fold Change>2)was observed in Silky Fowl compared to White Leghorn.After filtration by cluster analysis,functional annotation and pathway analysis,eight differentially expressed genes were identified to be closely related to the development of melanocytes.Moreover,differences in expression of immune genes were also detected between Silky Fowl and White Leghorn.The differentially expressed genes associated with melanocyte development were verified by q-PCR,and results were highly consistent with the microarray data.The genes with significantly altered expression involved in melanoblast migration and development suggested that different microenvironments resulted in the abnormal melanoblast migration in Silky Fowl,although there were no big differences in melanoblast development between these two breeds.The candidate genes discovered in this study are beneficial to understand the molecular mechanism of hyperpigmentation in Silky Fowl.展开更多
基金supported by National Natural Science Foundation of China(12061080,12161087 and 12261093)the Science and Technology Project of the Education Department of Jiangxi Province(GJJ211601)supported by National Natural Science Foundation of China(11871305).
文摘We study equations in divergence form with piecewise Cαcoefficients.The domains contain corners and the discontinuity surfaces are attached to the edges of the corners.We obtain piecewise C^(1,α) estimates across the discontinuity surfaces and provide an example to illustrate the issue regarding the regularity at the corners.
基金the programs of National Key R&D Program of China(2021YFF1000700)National Natural Science Foundation of China(32002145)+1 种基金the Major Project for Cultivation Technology of New Varieties of Genetically Modified Organisms of the Ministry of Agriculture(grant Nos.2016ZX08008-001 and 2013ZX08008-001)Ningxia Agricultural Breeding Project(NXNYYZ2015010).
文摘Background Wool fibers are valuable materials for textile industry.Typical wool fibers are divided into medullated and non-medullated types,with the former generated from primary wool follicles and the latter by either primary or secondary wool follicles.The medullated wool is a common wool type in the ancestors of fine wool sheep before breeding.The fine wool sheep have a non-medullated coat.However,the critical period determining the type of wool follicles is the embryonic stage,which limits the phenotypic observation and variant contrast,making both selection and studies of wool type variation fairly difficult.Results During the breeding of a modern fine(MF)wool sheep population with multiple-ovulation and embryo transfer technique,we serendipitously discovered lambs with ancestral-like coarse(ALC)wool.Whole-genome rese-quencing confirmed ALC wool lambs as a variant type from the MF wool population.We mapped the significantly associated methylation locus on chromosome 4 by using whole genome bisulfite sequencing signals,and in turn identified the SOSTDC1 gene as exons hypermethylated in ALC wool lambs compare to their half/full sibling MF wool lambs.Transcriptome sequencing found that SOSTDC1 was expressed dozens of times more in ALC wool lamb skin than that of MF and was at the top of all differentially expressed genes.An analogy with the transcriptome of coarse/fine wool breeds revealed that differentially expressed genes and enriched pathways at postnatal lamb stage in ALC/MF were highly similar to those at the embryonic stage in the former.Further experiments validated that the SOSTDC1 gene was specifically highly expressed in the nucleus of the dermal papilla of primary wool follicles.Conclusion In this study,we conducted genome-wide differential methylation site association analysis on differen-tial wool type trait,and located the only CpG locus that strongly associated with primary wool follicle development.Combined with transcriptome analysis,SOSTDC1 was identified as the only gene at this locus that was specifically overexpressed in the primary wool follicle stem cells of ALC wool lamb skin.The discovery of this key gene and its epigenetic regulation contributes to understanding the domestication and breeding of fine wool sheep.
基金supported by National Nature Science Foundation of China(U1136605)the Innovation Base Cultivation and Development Projectresearch on Precise genetic modification in sheep(Z171100002217072)Program for Changjiang Scholar and Innovation Research Team in University(IRT1191)
文摘Background: Black bone sheep was first discovered in Yunnan province of China in 1970, with unique black pigmentation on the body and internal organs. Endothelin 3(EDN3) has been known as a key gene causing hyperpigmentation in black bone chicken, the Silky fowl.Methods: In this study, EDN3 was employed as a candidate gene for regulating black color pigmentation. First,EDN3 was cloned from sheep to obtain the full-length cDNA by using the rapid amplification of cDNA ends(RACE).Genomic EDN3 was screened and a total of thirty predicted single nucleotide polymorphisms(SNPs) were genotyped for allele and genotype frequency analysis in a case-control study involving two black bone sheep populations. Genomic copy number analysis of EDN3 in sheep was conducted to measure the variation in copy number. EDN3 expression levels were observed among the groups in adult liver, lymph node, and kidney tissues, as well as embryo kidney samples. Also, among the tissues of black bone and non-black bone sheep.Results: The size of the full-length cDNA was 1,578 bp, which included 426 bp of 5′-untranslated region(5′-UTR),an open reading frame(ORF) of 639 bp encoding a protein of 212 amino acids, and a 3′-UTR of 513 bp. Genotype and allele frequencies of all the discovered SNPs were found insignificantly different in black bone and non-black bone sheep(P > 0.05). Genomic copy number analysis of EDN3 in sheep revealed no significant difference between the two sheep groups. No significant variations were found in the adult liver and kidney embryo samples. However,the expression in lymph node and kidney tissue was significantly higher in black bone sheep than that in non-black bone sheep(P < 0.05). Significant variations in the EDN3 expression levels were observed among the tissues of nonblack bone sheep.Conclusions: The findings of the present study indicate that unlike in Silky chickens, EDN3 is not responsible for hyperpigmentation but may play a key functional role in immune and excretory systems of black bone sheep.
基金funded by the National Nature Science Foundation of China(U1136605)Ningxia Agricultural Breeding Program(NXNYYZ20150103)Program for Changjiang Scholar and Innovation Research Team in University(IRT1191)
文摘Background: The widely observed RNA-DNA differences(RDDs) have been found to be due to nucleotide alteration by RNA editing. Canonical RNA editing(i.e., A-to-I and C-to-U editing) mediated by the adenosine deaminases acting on RNA(ADAR) family and apolipoprotein B mRNA editing catalytic polypeptide-like(APOBEC)family during the transcriptional process is considered common and essential for the development of an individual.To date, an increasing number of RNA editing sites have been reported in human, rodents, and some farm animals;however, genome-wide detection of RNA editing events in sheep has not been reported. The aim of this study was to identify RNA editing events in sheep by comparing the RNA-seq and DNA-seq data from three biological replicates of the kidney and spleen tissues.Results: A total of 607 and 994 common edited sites within the three biological replicates were identified in the ovine kidney and spleen, respectively. Many of the RDDs were specific to an individual. The RNA editing-related genes identified in the present study might be evolved for specific biological functions in sheep, such as structural constituent of the cytoskeleton and microtubule-based processes. Furthermore, the edited sites found in the ovine BLCAP and NEIL1 genes are in line with those in previous reports on the porcine and human homologs, suggesting the existence of evolutionarily conserved RNA editing sites and they may play an important role in the structure and function of genes.Conclusions: Our study is the first to investigate RNA editing events in sheep. We screened out 607 and 994 RNA editing sites in three biological replicates of the ovine kidney and spleen and annotated 164 and 247 genes in the kidney and spleen, respectively. The gene function and conservation analysis of these RNA editing-related genes suggest that RNA editing is associated with important gene function in sheep. The putative functionally important RNA editing sites reported in the present study will help future studies on the relationship between these edited sites and the genetic traits in sheep.
基金supported by the National Natural Science Foundation of China (No. 2117145)
文摘Detection of N-acyl homoserine lactones (AHLs) is useful for understanding quorum sensing (QS) behaviors, including biofilm formation, virulence and metabolism. For detecting AHLs and indicating the host cells in situ, we constructed the plasmid pUCGMA2T1-4 to make a dual fluorescent whole- cell biosensor based on the AhlI/R AHL system of Pseudomonas syringae pv. syringae B728a. The plasmid contains three components: constitutively expressed enptll::gfP for indicating host cells, Pahll::mcherry that produces red fluorescence in response to AHL, and the ahIR gene that encodes an AHL regulatory protein. Meanwhile, two copies of T1-4 (four tandem copies of a transcriptional terminator) were added into the plasmid to reduce background. The results showed that when the plasmid was placed into Escherichia coli, the dual fluorescence whole-cell biosensor was able to respond with red fluorescence within 6 hr to 5 × 10^-8-1 × 10^-5 mol/L of 3OC6-HSL. Bright green fluorescence indicated the host cells. Furthermore, when the plasmid was transferred to wild- type Pseudomonas PhTA125 (an AHL-producing bacterium), it also showed both green and red fluorescence. This result demonstrates that this plasmid can be used to construct whole-cell indicators that can indicate the AHL response and spatial behaviors of microbes in a mi tal niche
基金supported by China Scholarship Council (Nos. 2008631071,2009610055)the EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE (No. EP/E035027/1)
文摘When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. In this paper, shock reflection by large-angle wedges for compressible flow modeled by the nonlinear wave equation is studied and a global theory of existence, stability and regularity is established. Moreover, C^0,1 is the optimal regularity for the solutions across the degenerate sonic boundary.
基金supported by Natural Science Foundation of China(31472082,30771535)the National High-tech R&D Program of China(2013AA102501).
文摘Melanoblasts originating from neural crest cells can migrate through the mesenchyme of the developed embryo and give rise to melanocytes.Unlike the melanocytes that are confined to the integument in other vertebrates,melanocytes in Silky Fowl can reach the ventral regions of the embryos owing to differences in gene expression in the process of melanoblasts migration.In this study,we used microarray profiling to identify differences in gene expression between White Leghorn and Silky Fowl.Differential expression of 2517 microarray probes(P<0.01,Fold Change>2)was observed in Silky Fowl compared to White Leghorn.After filtration by cluster analysis,functional annotation and pathway analysis,eight differentially expressed genes were identified to be closely related to the development of melanocytes.Moreover,differences in expression of immune genes were also detected between Silky Fowl and White Leghorn.The differentially expressed genes associated with melanocyte development were verified by q-PCR,and results were highly consistent with the microarray data.The genes with significantly altered expression involved in melanoblast migration and development suggested that different microenvironments resulted in the abnormal melanoblast migration in Silky Fowl,although there were no big differences in melanoblast development between these two breeds.The candidate genes discovered in this study are beneficial to understand the molecular mechanism of hyperpigmentation in Silky Fowl.