Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the...Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the flexible structures and the unique motion mechanism of the octopus arm. The SRA is fabricated with elastomeric materials, which consists of four series of integrated pneumatic chambers that play similar roles as the muscles in the octopus arm can achieve large bending in various directions with variable stiffness. This SRA displays specified movements via controlling pressure and selecting channels. Moreover, utilizing parallel control, the SRA demonstrates complicated three-dimensional motions. The force response and motion of the SRA are determined both experimentally and computationally. The applications of the present SRA include tightly coiling around the objects because of its large bending deformation (nearly 360°), grasping multiple objects, and adjusting the grabbing mode in accordance with the shape of objects.展开更多
基金This work is supported by the National Natural Science Foundation of China (nos. 11525210, 11621062, and 91748209) and the Fundamental Research Funds for the Central Universities.
文摘Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the flexible structures and the unique motion mechanism of the octopus arm. The SRA is fabricated with elastomeric materials, which consists of four series of integrated pneumatic chambers that play similar roles as the muscles in the octopus arm can achieve large bending in various directions with variable stiffness. This SRA displays specified movements via controlling pressure and selecting channels. Moreover, utilizing parallel control, the SRA demonstrates complicated three-dimensional motions. The force response and motion of the SRA are determined both experimentally and computationally. The applications of the present SRA include tightly coiling around the objects because of its large bending deformation (nearly 360°), grasping multiple objects, and adjusting the grabbing mode in accordance with the shape of objects.