Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and contr...Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and control of noise relevant to the transformer stations.In this paper surface vibration tests are carried out on a scale model of a single-phase transformer tank wall at different excitation frequencies.The phase and amplitude of test data are found to be randomly distributed when the excitation frequency exceeds the seventh mode frequency,which allows the single-phase power transformer to be simplified as incoherent point sources.An outdoor-coherent model is subsequently developed and incorporated with the image source method to investigate noise propagation from single-phase power transformers,due to the occurrence of multiple reflections and diffractions in the propagation path of each point source.The proposed model is used to calculate the sound field of the power transformer group by exploiting the additional phase information.In comparison with the ISO9613 model and the boundary element method,it is found that the proposed coherent image source method leads to more accurate prediction results,and hence better performance for the prediction of the outdoor noise induced by single-phase power transformers.展开更多
基金This work is funded by the Anhui Natural Science Foundation Project of China(under Grant KJ2016A201)the National Natural Science Foundation of China(under Grant 11774378).
文摘Outdoor power transformers are one of the most pervasive noise sources in power transmission and distribution systems.Accurate prediction of outdoor noise propagation plays a dominant role for the evaluation and control of noise relevant to the transformer stations.In this paper surface vibration tests are carried out on a scale model of a single-phase transformer tank wall at different excitation frequencies.The phase and amplitude of test data are found to be randomly distributed when the excitation frequency exceeds the seventh mode frequency,which allows the single-phase power transformer to be simplified as incoherent point sources.An outdoor-coherent model is subsequently developed and incorporated with the image source method to investigate noise propagation from single-phase power transformers,due to the occurrence of multiple reflections and diffractions in the propagation path of each point source.The proposed model is used to calculate the sound field of the power transformer group by exploiting the additional phase information.In comparison with the ISO9613 model and the boundary element method,it is found that the proposed coherent image source method leads to more accurate prediction results,and hence better performance for the prediction of the outdoor noise induced by single-phase power transformers.