Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density ...Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.展开更多
Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively comb...Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively combine a library of advantages of each component on different scales for energy storage.However,serious aggregation,structural degradation,and even poor stability of nanomaterials are well-known issues during electrochemically driven volume expansion/contraction processes.The confinement strategy provides a new route to construct controllable internal void spaces to avoid the intrinsic volume effects of nanomaterials during the reaction or charge/discharge process.Herein,we discuss the confinement strategies and methods for energy storage-related electrode materials with a one-dimensional channel,two-dimensional interlayer,and three-dimensional space as reaction environments.For each confinement environment,the correlation between the confinement condition/structure and the behavioral characteristics of energy storage devices in the scope of metal-ion batteries(e.g.,Li-ion,Na-ion,K-ion,and Mg-ion batteries),Li-S batteries(LSBs),Zn-air batteries(ZIBs),and supercapacitors.Finally,we discussed the challenges and perspectives on future nanomaterial confinement strategies for electrochemical energy storage devices.展开更多
A new electroluminescent material, salicylaldehyde anil zinc (SAZ) was synthesized, which can form high quality, thermal stability, nano-scale amorphous films by vacuum evaporation. Its structure, thermal stability ...A new electroluminescent material, salicylaldehyde anil zinc (SAZ) was synthesized, which can form high quality, thermal stability, nano-scale amorphous films by vacuum evaporation. Its structure, thermal stability were characterized by infrared (IR) spectra, differential thermal analysis-thermogravimetry (DTA-TG) analysis, respectively. The optical properties of SAZ were investigated by UV absorption spectra, Photoluminescence (PL) excitation and emission spectra. The highest occupied molecular orbits (HOMO), lowest unoccupied molecular orbits (LUMO) and optical band gap were evaluated by cyclic voltammetry curve and optical absorption band edge. The electroluminescent devices using SAZ as the emissive layer emit green light with a peak wavelength at 509 nm and a brightness of about 3.1 cd/m^2.展开更多
At present, the specificity of meridians and acupoints has been studied using functional brain imaging techniques from many standpoints, including meridians, acupoints, and sham acupoints, as well as different meridia...At present, the specificity of meridians and acupoints has been studied using functional brain imaging techniques from many standpoints, including meridians, acupoints, and sham acupoints, as well as different meridians and acupoints, coordination of acupoints, and factors influencing meridian and acupoint specificity Preliminary experimental data have demonstrated that acupuncture at meridians and acupoints is specific with regard to brain neural information. However, research findings are contradictory, which may be related to brain functional complexity, resolution of functional brain imaging techniques, and experimental design. Future studies should further improve study method, and should strictly control experimental conditions to better analyze experimental data and acquire more beneficial data. Because of its many advantages, the functional brain imaging technique is a promising method for studying meridian and acupoint specificity.展开更多
Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a...Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a porous carbon(PC)of unimodal super-micropore(micro-PC)is realized.Such precise single-molecule confinement enables sufficient activity center exposure and maximum electron-transfer from micro-PC to POM,which well stabilizes the electron-accepting molecules and thoroughly activates its inherent multi-electron redox-activity.In particular,the redox-activities and electron-accepting properties of the confined POM molecule are revealed to be super-micropore pore size-dependent by experiment and spectroscopy as well as theoretical calculation.Meanwhile,the molecularly dispersed POM molecules confined steadily in the“cage”of micro-PC exhibit unprecedented large-negative-potential stability and multiple-peak redox-activity at an ultra-low loading of~11.4 wt%.As a result,the fabricated solid-state supercapacitor achieves a remarkable areal capacitance,ultrahigh energy and power density of 443 mF cm^(-2),0.12 mWh cm^(-2)and 21.1 mW cm^(-2),respectively.This work establishes a novel strategy for the precise confinement of single POM molecule,providing a versatile approach to inducing the intrinsic activity of POMs for advanced energy-storage systems.展开更多
The shooting state during shooting refers to the basketball’s shooting speed,shooting angle and the ball’s rotation speed.The basketball flight path is also related to these factors.In this paper,based on the three ...The shooting state during shooting refers to the basketball’s shooting speed,shooting angle and the ball’s rotation speed.The basketball flight path is also related to these factors.In this paper,based on the three forces of Gravity,Air Resistance and Magnus Force,the“Three Forces”model is established,the Kinetic equations are derived,the basketball flight trajectory is solved by simulation,and the best shot state when shooting is obtained through the shooting percentage.Compared with the“Single Force”model that only considers Gravity,the shooting percentage of the“Three Forces”model is higher.The reason is that the Magnus Force generated by considering the basketball rotation speed is considered.Although in the“Three Forces”model,the shot speed is faster and the shot is harder,the backspin will reduce the angle of the shot and achieve the goal of saving effort.By calculating the best shot state and giving the athlete’s usual training state range,you can guide the training,thereby improving the athlete’s shooting percentage during the game.展开更多
Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter.Here,we report spin-liquid-like behavior in a two-dimen...Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter.Here,we report spin-liquid-like behavior in a two-dimensional(2D)rhombic lattice Fe-metal-organic framework(Fe-MOF)with frustrated antiferromagnetism.This Fe-MOF exhibits a high frustration factor f=|θCW|/TN≥315,and its long-range magnetic order is suppressed down to 180 mK.Detailed theoretical calculations demonstrate strong antiferromagnetic coupling between adjacent Fe3+ions,indicating the potential of a classical spin-liquid-like behavior.Notably,a T-linear heat capacity parameter,γ,originating from electronic contributions and with magnetic field independence up to 8 T,can be observed in the specific heat capacity measurements at low-temperature,providing further proof for the spin-liquid-like behavior.This work highlights the potential of MOF materials in geometrically frustrated systems,and will promote the research of exotic quantum physics phenomena.展开更多
Carbon dots(CDs),as a solid-state phosphor,have great potential for application in a new solid-state lighting device—laser diode(LD).For high efficiency LD devices,both high photoluminescence quantum yield(PLQY)and h...Carbon dots(CDs),as a solid-state phosphor,have great potential for application in a new solid-state lighting device—laser diode(LD).For high efficiency LD devices,both high photoluminescence quantum yield(PLQY)and high photothermal stability of CDs are essential.Herein,yellow CDs@ZIF-8 composites with high structural stability were prepared by encapsulating CDs in zeolitic imidazolate framework-8(ZIF-8)through electrostatic adsorption between CDs and ZIF-8,in which CDs with amino groups on the surface were used as luminescent feeders and ZIF-8 was used as a protective layer matrix.The asprepared CDs@ZIF-8 not only possess a high PLQY of up to 81.17%,but also maintain a high fluorescence intensity of 100%and 80%under long-term illumination(60 min)and high temperature(478 K),respectively.The hydrogen bonding between CDs and ZIF-8 in the encapsulated structure can enhance the degree of electron cloud delocalization,which can improve the PLQY of CDs@ZIF-8.Meanwhile,CDs@ZIF-8has high photothermal stability due to the binding effect of ZIF-8 on CDs and high thermal stability of ZIF-8.The white LD device,fabricated from CDs@ZIF-8 as a phosphor in combination with 450 nm blue LD,has a color coordinate of(0.37,0.33),a color temperature of 3762 K,and a high color rendering index of 86.This study provides a new strategy for the construction of solid-state phosphors with high PLQY and high photothermal performance.展开更多
Effective charge separation and transfer is deemed to be the contributing factor to achieve high photoelectrochemical(PEC)water splitting performance on photoelectrodes.Building a phase junction structure with control...Effective charge separation and transfer is deemed to be the contributing factor to achieve high photoelectrochemical(PEC)water splitting performance on photoelectrodes.Building a phase junction structure with controllable phase transition of WO_(3) can further improve the photocatalytic performance.In this work,we realized the transition from orthorhombic to monoclinic by regulating the annealing temperatures,and constructed an orthorhombic–monoclinic WO_(3)(o-WO_(3)/m-WO_(3))phase junction.The formation of oxygen vacancies causes an imbalance of the charge distribution in the crystal structure,which changes the W–O bond length and bond angle,accelerating the phase transition.As expected,an optimum PEC activity was achieved over the o-WO_(3)/m-WO_(3) phase junction in WO_(3)-450 photoelectrode,yielding the maximum O_(2) evolution rate roughly 32 times higher than that of pure WO_(3)-250 without any sacrificial agents under visible light irradiation.The enhancement of catalytic activity is attributed to the atomically smooth interface with a highly matched lattice and robust built-in electric field around the phase junction,which leads to a less-defective and abrupt interface and provides a smooth interfacial charge separation and transfer path,leading to improved charge separation and transfer efficiency and a great enhancement in photocatalytic activity.This work strikes out on new paths in the formation of an oxygen vacancy-induced phase transition and provides new ideas for the design of catalysts.展开更多
NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion,migration,polarity,and cell fate determination.It has also been shown to play a role in the pathogenesis of certain cancers,alt...NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion,migration,polarity,and cell fate determination.It has also been shown to play a role in the pathogenesis of certain cancers,although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor.Here,we show that NUMB binds to anaplastic lymphoma kinase(ALK),a receptor tyrosine kinase aberrantly activated in several forms of cancer,and this interaction regulates the endocytosis and activity of ALK.Intriguingly,the function of the NUMB-ALK interaction is isoform-dependent.While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK,the former directs ALK to the lysosomal degradation pathway,thus decreasing the overall ALK level and the downstream MAP kinase signal.In contrast,the p72-NUMB isoform promotes ALK recycling back to the plasma membrane,thereby maintaining the kinase in its active state.Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.展开更多
As an effective means to improve charge carrier separation efficiency and directional transport,the gradient doping of foreign elements to build multi-homojunction structures inside catalysts has received wide attenti...As an effective means to improve charge carrier separation efficiency and directional transport,the gradient doping of foreign elements to build multi-homojunction structures inside catalysts has received wide attentions.Herein,we reported a simple and robust method to construct multi-homojunctions in black TiO_(2) nanotubes by the gradient doping of Ni species through the diffusion of deposited Ni element on the top of black TiO2 nanotubes driven by a high temperature annealing process.The gradient Ni distribution created parts of different Fermi energy levels and energy band structures within the same black TiO_(2) nanotube,which subsequently formed two series of multi-homojunctions within it.This special multi-homojunction structure largely enhanced the charge carrier separation and transportation,while the low concentration of defect states near the surface layer further inhibited carrier recombination and facilitated the surface reaction.Thus,the B-TNT-2Ni sample with the optimized Ni doping concentration exhibited an enhanced hydrogen evolution rate of~1.84 mmol·g^(−1)·h^(−1)under visible light irradiation without the assistance of noble-metal cocatalysts,~four times higher than that of the pristine black TiO_(2)nanotube array.With the capability to create multi-homojunction structures,this approach could be readily applied to various dopant systems and catalyst materials for a broad range of technical applications.展开更多
High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as un...High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as unique fluorescence properties,anti-photobleaching,low toxicity,fine biocompatibility and high penetration depth in tissues,have been considered as a potential candidate in cell imaging fluorescent probes.Herein,N,S-codoped green-emissive CQDs(QY=64.03%)were synthesized by the one-step hydrothermal method,with m-phenylenediamine as the carbon and nitrogen source,and L-cysteine as the nitrogen and sulfur dopant,under the optimum condition of 200℃ reaction for 2 h.Their luminescence was found to originate from the surface state.In light of the satisfactory photobleaching resistance and the low cytotoxicity,CQDs were used as a cell imaging probe for HeLa cell imaging.The results clearly indicate that cells can be labeled with CQDs,which can not only enter the cytoplasm,but also enter the nucleus through the nuclear pore,showing their broad application prospect in the field of cell imaging.展开更多
A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole(PPy)hydrogel as a precursor.This design of PPy hydrogel precursor containing ...A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole(PPy)hydrogel as a precursor.This design of PPy hydrogel precursor containing molecular-scale grids(diameter~2.0 nm)allows for homogeneous N,O-codoping into the porous carbon scaffold during the pyrolysis process.A subsequent activation step produces activated porous carbons(APCs)with tailored pore structures,which renders the APCs abundant subnanopores on their surface to increase the specific capacitance as extra capacitance sites.Coupled with large specific surface area and abundant heteroatoms,the optimized APC4/1 displays excellent specific capacitance of 379 F/g for liquid-state supercapacitor and 230 F/g for solid-state supercapacitor.The solid-state supercapacitor shows a high energy density of 22.99 Wh/kg at power density of 420 W/kg,which is higher than most reported porous carbon materials and satisfy the urgent requirements of elementary power source for electric vehicles.Moreover,this method can be easily modified to fabricate sub-nanopore-containing porous carbons with preferred structures and compositions for many applications.展开更多
Electrocatalytic reduction of Cr(Ⅵ)to less toxic Cr(Ⅲ)is deemed as a promising technique.Conventional electrocatalytic reduction is always driven by a constant cathodic potential,which exhibits a repelling action to...Electrocatalytic reduction of Cr(Ⅵ)to less toxic Cr(Ⅲ)is deemed as a promising technique.Conventional electrocatalytic reduction is always driven by a constant cathodic potential,which exhibits a repelling action to Cr(Ⅵ)oxyanions in wastewater and consequently suppresses reduction kinetics.In order to remarkably accelerate Cr(Ⅵ)electrocatalytic reduction,we applied a pulsed potential on an Fe^(2+)-NiFe LDH/NF electrode synthesized by in situ growth of Fe^(2+)-doped NiFe LDH nanosheets on Ni foam using a spontaneous redox reaction.Under anodic potential section,HCrO_(4)^(–) anions are adsorbed on the electrode surface and reduced to Cr(Ⅲ)by Fe^(2+).Then,Cr(Ⅲ)ions are desorbed from the electrode surface under coulombic force.The regeneration of Fe^(2+) and direct reduction of Cr(Ⅵ)are achieved under cathodic potential section.The pulsed potential can achieve complete elimination of Cr(Ⅵ)within 60 min at an initial concentration of 10 mg L^(-1),and the removal efficiency shows a 60%increase with respect to that under constant cathodic potential.展开更多
In recent years,few-layer or even monolayer ferromagnetic materials have drawn a great deal of attention due to the promising integration of two-dimensional(2D)magnets into next-generation spintronic devices.The SrRuO...In recent years,few-layer or even monolayer ferromagnetic materials have drawn a great deal of attention due to the promising integration of two-dimensional(2D)magnets into next-generation spintronic devices.The SrRuO_(3)monolayer is a rare example of stable 2D magnetism under ambient conditions,but only weak ferromagnetism or antiferromagnetism has been found.The biatomic layer SrRuO_(3)as another environmentally inert 2D magnetic system has been paid less attention heretofore.Here we study both the bi-atomic layer and monolayer SrRuO_(3)in(SrRuO_(3))n/(SrTiO_(3))m(n=1,2)superlattices in which the SrTiO3 serves as a non-magnetic and insulating space layer.Although the monolayer exhibits arguably weak ferromagnetism,we find that the bi-atomic layer exhibits exceedingly strong ferromagnetism with a Tc of 125 K and a saturation magnetization of 1.2μB/Ru,demonstrated by both superconducting quantum interference device(SQUID)magnetometry and element-specific X-ray circular dichroism.Moreover,in the bi-atomic layer SrRuO_(3),we demonstrate that random fluctuations and orbital reconstructions inevitably occurring in the 2D limit are critical to the electrical transport,but are much less critical to the ferromagnetism.Our study demonstrates that the bi-atomic layer SrRuO_(3)is an exceedingly strong 2D ferromagnetic oxide which has great potentials for applications of ultracompact spintronic devices.展开更多
Photocatalytic degradation is a promising way to eliminate dye contaminants.In this work,a series of TiO2/ZSM-11(TZ)nanocomposites were prepared using a facile solid state dispersion method.Methyl orange(MO),methylene...Photocatalytic degradation is a promising way to eliminate dye contaminants.In this work,a series of TiO2/ZSM-11(TZ)nanocomposites were prepared using a facile solid state dispersion method.Methyl orange(MO),methylene blue(MB),and rhodamine B(RhB)were intentionally chosen as target substrates in the photocatalytic degradation reactions.Compared to pristine TiO2,negative effect was observed on MO degradation while promoted kinetics were collected on MB and RhB over TZ composites.Moreover,a much higher photocatalytic rate was interestingly achieved on RhB than MB,which indicated that a new factor has to be included other than the widely accepted electrostatic interaction mechanism to fully understand the selective photodegradation reactions.Systematic characterizations showed that TiO2 and ZSM-11 physically mixed and maintained both the whole framework and local structure without chemical interaction.The different trends observed in surface area and the photo-absorption ability of TZ composites with reaction performance further excluded both as the promotion mechanism.Instead,adsorption energies predicted by molecular dynamics simulations suggested that differences in the adsorption strength played a critical role.This work provided a deep mechanistic understanding of the selective photocatalytic degradation of dyes reactions,which helps to rationally design highly efficient photocatalysts.展开更多
Submicrometer-scale ZnO composite aggregate arrays of nanorods and nanoparticles were prepared by simple wet-chemical route and studied as dye-sensitized solar cells (DSSCs) photoanodes. The ZnO composite aggregate ...Submicrometer-scale ZnO composite aggregate arrays of nanorods and nanoparticles were prepared by simple wet-chemical route and studied as dye-sensitized solar cells (DSSCs) photoanodes. The ZnO composite aggregate arrays significantly improved the efficiency of DSSCs due to their relatively high surface area, fast electron transport, and enhanced light-scattering capability. A short current density (Jsc) of 11.7 mA/cm2 and an overall solar-to-electric energy conversion efficiency (η) of 3.17% were achieved for the ZnO composite aggregate DSSCs, which were much higher than those obtained for the monodisperse aggregate DSSCs (Jsc = 6.9 mA/cm2, r/= 1.51 %) and ZnO nanorod array DSSCs (Jsc = 4.2 mA/cm2, η= 0.61%).展开更多
Photocatalytic non-oxidative coupling of methane(PNOCM)is a mild and cost-effective method for the production of multicarbon compounds.However,the separation of photogenerated charges and activation of methane(CH4)are...Photocatalytic non-oxidative coupling of methane(PNOCM)is a mild and cost-effective method for the production of multicarbon compounds.However,the separation of photogenerated charges and activation of methane(CH4)are the main challenges for this reaction.Here,single crystal-like TiO_(2) nanotubes(VO-p-TNTs)with oxygen vacancies(VO)and preferential orientation were prepared and applied to PNOCM.The results demonstrate that the significantly enhanced photocatalytic performance is mainly related to the strong synergistic effect between preferential orientation and VO.The preferential orientation of VO-p-TNT along the[001]direction reduces the formation of complex centers at grain boundaries as the form of interfacial states and potential barriers,which improves the separation and transport of photogenerated carriers.Meanwhile,VO provides abundant coordination unsaturated sites for CH4 chemisorption and also acts as electron traps to hinder the recombination of electrons and holes,establishing an effective electron transfer channel between the adsorbed CH4 molecule and photocatalyst,thus weakening the C–H bond.In addition,the introduction of VO broadens the light absorption range.As a result,VO-p-TNT exhibits excellent PNOCM performance and provides new insights into catalyst design for CH4 conversion.展开更多
As a new type of luminescent material,carbon dots(CDs)have attracted increased attention for their superior optical properties in recent years.However,solidstate fluorescent CDs,especially with red emission,are still ...As a new type of luminescent material,carbon dots(CDs)have attracted increased attention for their superior optical properties in recent years.However,solidstate fluorescent CDs,especially with red emission,are still a major challenge.Here,CDs with solid-state red emission were synthesized by co-doping of N and B using the one-step microwave method.The CD powder exhibits excitation-independent solid-state red fluorescence without any dispersion matrices,with optimum solid-state fluorescence wavelength of 623 nm.The hydrogen bonding interaction in CDs is helpful for solid-state fluorescence of CDs.The IG/ID value of CDs reaches up to 3.49,suggesting their very high graphitization degree,which is responsible for their red emission.In addition,CDs show the concentration-induced multicolor emission,which is attributed to the decreased energy gap in the high concentrated CD solution.To exploit their concentration-dependent emission,CDs with changing ratio in matrices are applied as a color-converting layer on ultraviolet chip to fabricate multicolor light-emitting diodes with light coordinates of(0.33,0.38),(0.41,0.48),(0.49,0.44),and(0.67,0.33),which belong to green,yellow,orange,and red light,respectively.展开更多
基金the financial support from the National Natural Science Foundation of China(51672033,U1610255,U1703251).
文摘Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
基金funding from the National Natural Science Foundation of China(Nos.51902222,51972221).
文摘Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively combine a library of advantages of each component on different scales for energy storage.However,serious aggregation,structural degradation,and even poor stability of nanomaterials are well-known issues during electrochemically driven volume expansion/contraction processes.The confinement strategy provides a new route to construct controllable internal void spaces to avoid the intrinsic volume effects of nanomaterials during the reaction or charge/discharge process.Herein,we discuss the confinement strategies and methods for energy storage-related electrode materials with a one-dimensional channel,two-dimensional interlayer,and three-dimensional space as reaction environments.For each confinement environment,the correlation between the confinement condition/structure and the behavioral characteristics of energy storage devices in the scope of metal-ion batteries(e.g.,Li-ion,Na-ion,K-ion,and Mg-ion batteries),Li-S batteries(LSBs),Zn-air batteries(ZIBs),and supercapacitors.Finally,we discussed the challenges and perspectives on future nanomaterial confinement strategies for electrochemical energy storage devices.
基金This work was supported by the National Excellent Youth Foundation of China(50025103)the National Natural Science Foundation of China(20271037 and 90306014)+1 种基金the Shanxi Province Natural Science Foundation(20041066)the Shanxi Province Scientific Research Foundation of the Scholars Returned from Abroad.(200523)
文摘A new electroluminescent material, salicylaldehyde anil zinc (SAZ) was synthesized, which can form high quality, thermal stability, nano-scale amorphous films by vacuum evaporation. Its structure, thermal stability were characterized by infrared (IR) spectra, differential thermal analysis-thermogravimetry (DTA-TG) analysis, respectively. The optical properties of SAZ were investigated by UV absorption spectra, Photoluminescence (PL) excitation and emission spectra. The highest occupied molecular orbits (HOMO), lowest unoccupied molecular orbits (LUMO) and optical band gap were evaluated by cyclic voltammetry curve and optical absorption band edge. The electroluminescent devices using SAZ as the emissive layer emit green light with a peak wavelength at 509 nm and a brightness of about 3.1 cd/m^2.
基金Major State Basic Research Development Program of China (973 Program), No.2006CB504501
文摘At present, the specificity of meridians and acupoints has been studied using functional brain imaging techniques from many standpoints, including meridians, acupoints, and sham acupoints, as well as different meridians and acupoints, coordination of acupoints, and factors influencing meridian and acupoint specificity Preliminary experimental data have demonstrated that acupuncture at meridians and acupoints is specific with regard to brain neural information. However, research findings are contradictory, which may be related to brain functional complexity, resolution of functional brain imaging techniques, and experimental design. Future studies should further improve study method, and should strictly control experimental conditions to better analyze experimental data and acquire more beneficial data. Because of its many advantages, the functional brain imaging technique is a promising method for studying meridian and acupoint specificity.
基金the National Natural Science Foundation of China(No.51902222,5197222 and 62174013)
文摘Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a porous carbon(PC)of unimodal super-micropore(micro-PC)is realized.Such precise single-molecule confinement enables sufficient activity center exposure and maximum electron-transfer from micro-PC to POM,which well stabilizes the electron-accepting molecules and thoroughly activates its inherent multi-electron redox-activity.In particular,the redox-activities and electron-accepting properties of the confined POM molecule are revealed to be super-micropore pore size-dependent by experiment and spectroscopy as well as theoretical calculation.Meanwhile,the molecularly dispersed POM molecules confined steadily in the“cage”of micro-PC exhibit unprecedented large-negative-potential stability and multiple-peak redox-activity at an ultra-low loading of~11.4 wt%.As a result,the fabricated solid-state supercapacitor achieves a remarkable areal capacitance,ultrahigh energy and power density of 443 mF cm^(-2),0.12 mWh cm^(-2)and 21.1 mW cm^(-2),respectively.This work establishes a novel strategy for the precise confinement of single POM molecule,providing a versatile approach to inducing the intrinsic activity of POMs for advanced energy-storage systems.
基金This work was supported by College Students Practice Innovation Training Program of NUIST[201910300292].
文摘The shooting state during shooting refers to the basketball’s shooting speed,shooting angle and the ball’s rotation speed.The basketball flight path is also related to these factors.In this paper,based on the three forces of Gravity,Air Resistance and Magnus Force,the“Three Forces”model is established,the Kinetic equations are derived,the basketball flight trajectory is solved by simulation,and the best shot state when shooting is obtained through the shooting percentage.Compared with the“Single Force”model that only considers Gravity,the shooting percentage of the“Three Forces”model is higher.The reason is that the Magnus Force generated by considering the basketball rotation speed is considered.Although in the“Three Forces”model,the shot speed is faster and the shot is harder,the backspin will reduce the angle of the shot and achieve the goal of saving effort.By calculating the best shot state and giving the athlete’s usual training state range,you can guide the training,thereby improving the athlete’s shooting percentage during the game.
基金supported by the National Key Research and Development Program of China(No.2021YFA1600800)the National Natural Science Foundation of China(Nos.11975234,12075243,12005227,12105286,121350122,U2032150,12275271,12205305,and U1932211)+5 种基金the Natural Science Foundation of Anhui Province(Nos.2208085QA14 and 2208085J13)the Users with Excellence Program of Hefei Science Center CAS(Nos.2020HSC-UE002,2020HSC-CIP013,2021HSC-UE002,and 2021HSC-UE003)the Major science and technology project of Anhui Province(No.202103a05020025)the Key Program of Research and Development of Hefei Science Center,CAS(Nos.2021HSC-KPRD002 and 2021HSC-KPRD003)the Fundamental Research Funds for the Central Universities(No.WK 2310000103)partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
文摘Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter.Here,we report spin-liquid-like behavior in a two-dimensional(2D)rhombic lattice Fe-metal-organic framework(Fe-MOF)with frustrated antiferromagnetism.This Fe-MOF exhibits a high frustration factor f=|θCW|/TN≥315,and its long-range magnetic order is suppressed down to 180 mK.Detailed theoretical calculations demonstrate strong antiferromagnetic coupling between adjacent Fe3+ions,indicating the potential of a classical spin-liquid-like behavior.Notably,a T-linear heat capacity parameter,γ,originating from electronic contributions and with magnetic field independence up to 8 T,can be observed in the specific heat capacity measurements at low-temperature,providing further proof for the spin-liquid-like behavior.This work highlights the potential of MOF materials in geometrically frustrated systems,and will promote the research of exotic quantum physics phenomena.
基金financially supported by the Foundational Research Project of Shanxi Province(No.20210302123164)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Nos.2022SX-TD012,2021SX-TD012)Shanxi Scholarship Council of China(No.2020–051)。
文摘Carbon dots(CDs),as a solid-state phosphor,have great potential for application in a new solid-state lighting device—laser diode(LD).For high efficiency LD devices,both high photoluminescence quantum yield(PLQY)and high photothermal stability of CDs are essential.Herein,yellow CDs@ZIF-8 composites with high structural stability were prepared by encapsulating CDs in zeolitic imidazolate framework-8(ZIF-8)through electrostatic adsorption between CDs and ZIF-8,in which CDs with amino groups on the surface were used as luminescent feeders and ZIF-8 was used as a protective layer matrix.The asprepared CDs@ZIF-8 not only possess a high PLQY of up to 81.17%,but also maintain a high fluorescence intensity of 100%and 80%under long-term illumination(60 min)and high temperature(478 K),respectively.The hydrogen bonding between CDs and ZIF-8 in the encapsulated structure can enhance the degree of electron cloud delocalization,which can improve the PLQY of CDs@ZIF-8.Meanwhile,CDs@ZIF-8has high photothermal stability due to the binding effect of ZIF-8 on CDs and high thermal stability of ZIF-8.The white LD device,fabricated from CDs@ZIF-8 as a phosphor in combination with 450 nm blue LD,has a color coordinate of(0.37,0.33),a color temperature of 3762 K,and a high color rendering index of 86.This study provides a new strategy for the construction of solid-state phosphors with high PLQY and high photothermal performance.
基金The financial support is gratefully acknowledged from the National Natural Science Foundation of China(Grant Nos.62004137,21878257,and 21978196)Natural Science Foundation of Shanxi Province(Grant No.20210302123102)+4 种基金Key Research and Development Program of Shanxi Province(Grant No.201803D421079)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0156)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant No.2022SX-TD002)Shanxi Provincial Key Innovative Research Team in Science and Technology(Grant No.201605D13104510)Research Project Supported by Shanxi Scholarship Council of China(Grant No.2020-050).
文摘Effective charge separation and transfer is deemed to be the contributing factor to achieve high photoelectrochemical(PEC)water splitting performance on photoelectrodes.Building a phase junction structure with controllable phase transition of WO_(3) can further improve the photocatalytic performance.In this work,we realized the transition from orthorhombic to monoclinic by regulating the annealing temperatures,and constructed an orthorhombic–monoclinic WO_(3)(o-WO_(3)/m-WO_(3))phase junction.The formation of oxygen vacancies causes an imbalance of the charge distribution in the crystal structure,which changes the W–O bond length and bond angle,accelerating the phase transition.As expected,an optimum PEC activity was achieved over the o-WO_(3)/m-WO_(3) phase junction in WO_(3)-450 photoelectrode,yielding the maximum O_(2) evolution rate roughly 32 times higher than that of pure WO_(3)-250 without any sacrificial agents under visible light irradiation.The enhancement of catalytic activity is attributed to the atomically smooth interface with a highly matched lattice and robust built-in electric field around the phase junction,which leads to a less-defective and abrupt interface and provides a smooth interfacial charge separation and transfer path,leading to improved charge separation and transfer efficiency and a great enhancement in photocatalytic activity.This work strikes out on new paths in the formation of an oxygen vacancy-induced phase transition and provides new ideas for the design of catalysts.
基金grants(to S.S.-C.L.)from the Canadian Institutes of Health Research(CIHR)and the Canadian Cancer Society Research Institute.S.S.-C.L held a Canada Research Chair(Tier I)in Molecular and Epigenetic Basis of Cancer.R.W.and X.L.were recipients of Translational Breast Cancer Research Studentship from the Breast Cancer Society of Canada.R.W.received a studentship from the Schulich Dentistry Research Opportunity Program(SDROP).L.L.held a Shandong Provincial Natural Science Foundation grant and was a recipient of Distinguished Expert of Overseas Tai Shan Scholar.
文摘NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion,migration,polarity,and cell fate determination.It has also been shown to play a role in the pathogenesis of certain cancers,although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor.Here,we show that NUMB binds to anaplastic lymphoma kinase(ALK),a receptor tyrosine kinase aberrantly activated in several forms of cancer,and this interaction regulates the endocytosis and activity of ALK.Intriguingly,the function of the NUMB-ALK interaction is isoform-dependent.While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK,the former directs ALK to the lysosomal degradation pathway,thus decreasing the overall ALK level and the downstream MAP kinase signal.In contrast,the p72-NUMB isoform promotes ALK recycling back to the plasma membrane,thereby maintaining the kinase in its active state.Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.
基金support is gratefully acknowledged from the National Natural Science Foundation of China(NSFC)(Nos.62004137,21878257,and 21978196)the Natural Science Foundation(NSF)of Shanxi Province(No.20210302123102)+4 种基金the Key Research and Development Program of Shanxi Province(No.201803D421079)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0156)the Research Project Supported by Shanxi Scholarship Council of China(No.2020-050)the Fundamental Research Funds for the Central Universities(No.2682021CX116)Sichuan Science and Technology Program(No.2020YJ0259).
文摘As an effective means to improve charge carrier separation efficiency and directional transport,the gradient doping of foreign elements to build multi-homojunction structures inside catalysts has received wide attentions.Herein,we reported a simple and robust method to construct multi-homojunctions in black TiO_(2) nanotubes by the gradient doping of Ni species through the diffusion of deposited Ni element on the top of black TiO2 nanotubes driven by a high temperature annealing process.The gradient Ni distribution created parts of different Fermi energy levels and energy band structures within the same black TiO_(2) nanotube,which subsequently formed two series of multi-homojunctions within it.This special multi-homojunction structure largely enhanced the charge carrier separation and transportation,while the low concentration of defect states near the surface layer further inhibited carrier recombination and facilitated the surface reaction.Thus,the B-TNT-2Ni sample with the optimized Ni doping concentration exhibited an enhanced hydrogen evolution rate of~1.84 mmol·g^(−1)·h^(−1)under visible light irradiation without the assistance of noble-metal cocatalysts,~four times higher than that of the pristine black TiO_(2)nanotube array.With the capability to create multi-homojunction structures,this approach could be readily applied to various dopant systems and catalyst materials for a broad range of technical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.51972221 and 51803148)Central Government Guides Local Science and Technology Development Projects(YDZX20201400001722)+1 种基金the Shanxi Provincial Excellent Talents Science and Technology Innovation Project(201805D211001)the Natural Science Foundation of Shanxi Province(201901D211502 and 201901D211501).
文摘High fluorescence quantum yield(QY),excellent fluorescence stability,and low toxicity are essential for a good cellular imaging fluorescent probe.Green-emissive carbon quantum dots(CQDs)with many advantages,such as unique fluorescence properties,anti-photobleaching,low toxicity,fine biocompatibility and high penetration depth in tissues,have been considered as a potential candidate in cell imaging fluorescent probes.Herein,N,S-codoped green-emissive CQDs(QY=64.03%)were synthesized by the one-step hydrothermal method,with m-phenylenediamine as the carbon and nitrogen source,and L-cysteine as the nitrogen and sulfur dopant,under the optimum condition of 200℃ reaction for 2 h.Their luminescence was found to originate from the surface state.In light of the satisfactory photobleaching resistance and the low cytotoxicity,CQDs were used as a cell imaging probe for HeLa cell imaging.The results clearly indicate that cells can be labeled with CQDs,which can not only enter the cytoplasm,but also enter the nucleus through the nuclear pore,showing their broad application prospect in the field of cell imaging.
基金financial support from National Natural Science Foundation of China(Nos.51902222,51603142,U1610255)Key Laboratory of Yarn Materials Forming and Composite Processing Technology,Zhejiang Province(No.MTC2019-03)+2 种基金Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Nos.2019L0164 and 2019L0255)the Shanxi Provincial Key Innovative Research Team in Science and Technology(Nos.2015013002-10 and 201605D131045-10)Key R&D Program of Shanxi Province(International Cooperation,No.201903D421077)。
文摘A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole(PPy)hydrogel as a precursor.This design of PPy hydrogel precursor containing molecular-scale grids(diameter~2.0 nm)allows for homogeneous N,O-codoping into the porous carbon scaffold during the pyrolysis process.A subsequent activation step produces activated porous carbons(APCs)with tailored pore structures,which renders the APCs abundant subnanopores on their surface to increase the specific capacitance as extra capacitance sites.Coupled with large specific surface area and abundant heteroatoms,the optimized APC4/1 displays excellent specific capacitance of 379 F/g for liquid-state supercapacitor and 230 F/g for solid-state supercapacitor.The solid-state supercapacitor shows a high energy density of 22.99 Wh/kg at power density of 420 W/kg,which is higher than most reported porous carbon materials and satisfy the urgent requirements of elementary power source for electric vehicles.Moreover,this method can be easily modified to fabricate sub-nanopore-containing porous carbons with preferred structures and compositions for many applications.
基金financially supported by the National Natural Science Foundation of China(NSFC)(Nos.62004137,21878257 and 21978196)the Natural Science Foundation(NSF)of Shanxi Province(No.201701D221083)+5 种基金the Key Research and Development Program of Shanxi Province(No.201803D421079)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0156)the Shanxi Provincial Key Innovative Research Team in Science and Technology(No.201605D131045–10)the Research Project Supported by Shanxi Scholarship Council of China(2020–050)Horizontal Project(203010675-J)Liaoning Baiqianwan Talents Program。
文摘Electrocatalytic reduction of Cr(Ⅵ)to less toxic Cr(Ⅲ)is deemed as a promising technique.Conventional electrocatalytic reduction is always driven by a constant cathodic potential,which exhibits a repelling action to Cr(Ⅵ)oxyanions in wastewater and consequently suppresses reduction kinetics.In order to remarkably accelerate Cr(Ⅵ)electrocatalytic reduction,we applied a pulsed potential on an Fe^(2+)-NiFe LDH/NF electrode synthesized by in situ growth of Fe^(2+)-doped NiFe LDH nanosheets on Ni foam using a spontaneous redox reaction.Under anodic potential section,HCrO_(4)^(–) anions are adsorbed on the electrode surface and reduced to Cr(Ⅲ)by Fe^(2+).Then,Cr(Ⅲ)ions are desorbed from the electrode surface under coulombic force.The regeneration of Fe^(2+) and direct reduction of Cr(Ⅵ)are achieved under cathodic potential section.The pulsed potential can achieve complete elimination of Cr(Ⅵ)within 60 min at an initial concentration of 10 mg L^(-1),and the removal efficiency shows a 60%increase with respect to that under constant cathodic potential.
基金the National Natural Science Foundation of China(Nos.52072244 and 12104305)the Science and Technology Commission of Shanghai Municipality(No.21JC1405000)+1 种基金the ShanghaiTech Startup Fund.This research used resources of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract(No.DE-AC02-06CH11357)the Advanced Light Source,a U.S.DOE Office of Science User Facility under Contract(No.DE-AC02-05CH11231).
文摘In recent years,few-layer or even monolayer ferromagnetic materials have drawn a great deal of attention due to the promising integration of two-dimensional(2D)magnets into next-generation spintronic devices.The SrRuO_(3)monolayer is a rare example of stable 2D magnetism under ambient conditions,but only weak ferromagnetism or antiferromagnetism has been found.The biatomic layer SrRuO_(3)as another environmentally inert 2D magnetic system has been paid less attention heretofore.Here we study both the bi-atomic layer and monolayer SrRuO_(3)in(SrRuO_(3))n/(SrTiO_(3))m(n=1,2)superlattices in which the SrTiO3 serves as a non-magnetic and insulating space layer.Although the monolayer exhibits arguably weak ferromagnetism,we find that the bi-atomic layer exhibits exceedingly strong ferromagnetism with a Tc of 125 K and a saturation magnetization of 1.2μB/Ru,demonstrated by both superconducting quantum interference device(SQUID)magnetometry and element-specific X-ray circular dichroism.Moreover,in the bi-atomic layer SrRuO_(3),we demonstrate that random fluctuations and orbital reconstructions inevitably occurring in the 2D limit are critical to the electrical transport,but are much less critical to the ferromagnetism.Our study demonstrates that the bi-atomic layer SrRuO_(3)is an exceedingly strong 2D ferromagnetic oxide which has great potentials for applications of ultracompact spintronic devices.
基金support from the Education Department of Hubei Province through the Science and Technology Research Project(China)(B2021059).
文摘Photocatalytic degradation is a promising way to eliminate dye contaminants.In this work,a series of TiO2/ZSM-11(TZ)nanocomposites were prepared using a facile solid state dispersion method.Methyl orange(MO),methylene blue(MB),and rhodamine B(RhB)were intentionally chosen as target substrates in the photocatalytic degradation reactions.Compared to pristine TiO2,negative effect was observed on MO degradation while promoted kinetics were collected on MB and RhB over TZ composites.Moreover,a much higher photocatalytic rate was interestingly achieved on RhB than MB,which indicated that a new factor has to be included other than the widely accepted electrostatic interaction mechanism to fully understand the selective photodegradation reactions.Systematic characterizations showed that TiO2 and ZSM-11 physically mixed and maintained both the whole framework and local structure without chemical interaction.The different trends observed in surface area and the photo-absorption ability of TZ composites with reaction performance further excluded both as the promotion mechanism.Instead,adsorption energies predicted by molecular dynamics simulations suggested that differences in the adsorption strength played a critical role.This work provided a deep mechanistic understanding of the selective photocatalytic degradation of dyes reactions,which helps to rationally design highly efficient photocatalysts.
基金supported by the Changjiang Scholar and Innovative Research Team of the University of China(No. IRT0972)the National Natural Science Foundation of China (No.51002102)+1 种基金the Natural Science Foundation of Shanxi Province,China(No.2011011022-1)the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi,China
文摘Submicrometer-scale ZnO composite aggregate arrays of nanorods and nanoparticles were prepared by simple wet-chemical route and studied as dye-sensitized solar cells (DSSCs) photoanodes. The ZnO composite aggregate arrays significantly improved the efficiency of DSSCs due to their relatively high surface area, fast electron transport, and enhanced light-scattering capability. A short current density (Jsc) of 11.7 mA/cm2 and an overall solar-to-electric energy conversion efficiency (η) of 3.17% were achieved for the ZnO composite aggregate DSSCs, which were much higher than those obtained for the monodisperse aggregate DSSCs (Jsc = 6.9 mA/cm2, r/= 1.51 %) and ZnO nanorod array DSSCs (Jsc = 4.2 mA/cm2, η= 0.61%).
基金The financial support was gratefully acknowledged from the National Natural Science Foundation of China(Grant Nos.62004137,21878257,and 21978196)Natural Science Foundation of Shanxi Province(Grant No.20210302123102)+3 种基金Key Research and Development Program of Shanxi Province(Grant No.201803D421079)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0156)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant No.2022SX-TD002)Research Project Supported by Shanxi Scholarship Council of China(Grant No.2020-050).
文摘Photocatalytic non-oxidative coupling of methane(PNOCM)is a mild and cost-effective method for the production of multicarbon compounds.However,the separation of photogenerated charges and activation of methane(CH4)are the main challenges for this reaction.Here,single crystal-like TiO_(2) nanotubes(VO-p-TNTs)with oxygen vacancies(VO)and preferential orientation were prepared and applied to PNOCM.The results demonstrate that the significantly enhanced photocatalytic performance is mainly related to the strong synergistic effect between preferential orientation and VO.The preferential orientation of VO-p-TNT along the[001]direction reduces the formation of complex centers at grain boundaries as the form of interfacial states and potential barriers,which improves the separation and transport of photogenerated carriers.Meanwhile,VO provides abundant coordination unsaturated sites for CH4 chemisorption and also acts as electron traps to hinder the recombination of electrons and holes,establishing an effective electron transfer channel between the adsorbed CH4 molecule and photocatalyst,thus weakening the C–H bond.In addition,the introduction of VO broadens the light absorption range.As a result,VO-p-TNT exhibits excellent PNOCM performance and provides new insights into catalyst design for CH4 conversion.
基金This work was financially supported by the Foundation Research Project of Shanxi Province(Grant Nos.202103021223007,20210302123164,and 20210302124604)the National Natural Science Foundation of China(Grant No.51972221)+2 种基金the Research Project Supported by Shanxi Scholarship Council of China(Grant Nos.2020-051 and HGKY2019027)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0946)the Key Research Program of Lyuliang City(Grant No.GXZDYF2019087).
文摘As a new type of luminescent material,carbon dots(CDs)have attracted increased attention for their superior optical properties in recent years.However,solidstate fluorescent CDs,especially with red emission,are still a major challenge.Here,CDs with solid-state red emission were synthesized by co-doping of N and B using the one-step microwave method.The CD powder exhibits excitation-independent solid-state red fluorescence without any dispersion matrices,with optimum solid-state fluorescence wavelength of 623 nm.The hydrogen bonding interaction in CDs is helpful for solid-state fluorescence of CDs.The IG/ID value of CDs reaches up to 3.49,suggesting their very high graphitization degree,which is responsible for their red emission.In addition,CDs show the concentration-induced multicolor emission,which is attributed to the decreased energy gap in the high concentrated CD solution.To exploit their concentration-dependent emission,CDs with changing ratio in matrices are applied as a color-converting layer on ultraviolet chip to fabricate multicolor light-emitting diodes with light coordinates of(0.33,0.38),(0.41,0.48),(0.49,0.44),and(0.67,0.33),which belong to green,yellow,orange,and red light,respectively.