Near-infrared(NIR)hyperspectral imaging is a powerful technique that enables the capture of three-dimensional(3D)spectra-spatial information within the NIR spectral range,offering a wide array of applications.However,...Near-infrared(NIR)hyperspectral imaging is a powerful technique that enables the capture of three-dimensional(3D)spectra-spatial information within the NIR spectral range,offering a wide array of applications.However,the high cost associated with InGaAs focal plane array(FPA)has impeded the widespread adoption of NIR hyperspectral imaging.Addressing this challenge,in this study,we adopt an alternative approach—single-pixel detection for NIR hyperspectral imaging.Our investigation reveals that single-pixel detection outperforms conventional FPA,delivering a superior signal-to-noise ratio(SNR)for both spectral and imaging reconstruction.To implement this strategy,we leverage self-assembled colloidal quantum dots(CQDs)and a digital micromirror device(DMD)for NIR spectral and spatial information multiplexing,complemented by single-pixel detection for simultaneous spectral and image reconstruction.Our experimental results demonstrate successful NIR hyperspectral imaging with a detection window about 600 nm and an average spectral resolution of 8.6 nm with a pixel resolution of 128×128.The resulting spectral and spatial data align well with reference instruments,which validates the effectiveness of our approach.By circumventing the need for expensive and bulky FPA and wavelength selection components,our solution shows promise in advancing affordable and accessible NIR hyperspectral imaging technologies,thereby expanding the range of potential applications.展开更多
Light utilization is one of the key factors for the improvement of photocatalytic perfo rmance.He rein,we design C-TiO_(2) hollow nanoshells with strong Mie resonance for enhanced photocatalytic hydrogen evolution in ...Light utilization is one of the key factors for the improvement of photocatalytic perfo rmance.He rein,we design C-TiO_(2) hollow nanoshells with strong Mie resonance for enhanced photocatalytic hydrogen evolution in a dye-sensitized system under visible light irradiation(λ≥420 nm).By tuning the inner diameters of hollow nanoshells,the Mie resonance in hollow nanoshells is adjusted for better excitation of dye molecules,which thus greatly enhances the light utilization in visible light region.This work shows the potential of Mie resonance in nanoshells can be an alternative strategy to increase the light utilization for photocatalysis.展开更多
基金financially supported by the National Natural Science Foundation of China (62205180)the Natural Science Foundation of Shandong Province (ZR2022QF029)+1 种基金the Taishan Scholar Program of Shandong Province (Young Scientist)the Qilu Young Scientist Program of Shandong University.
文摘Near-infrared(NIR)hyperspectral imaging is a powerful technique that enables the capture of three-dimensional(3D)spectra-spatial information within the NIR spectral range,offering a wide array of applications.However,the high cost associated with InGaAs focal plane array(FPA)has impeded the widespread adoption of NIR hyperspectral imaging.Addressing this challenge,in this study,we adopt an alternative approach—single-pixel detection for NIR hyperspectral imaging.Our investigation reveals that single-pixel detection outperforms conventional FPA,delivering a superior signal-to-noise ratio(SNR)for both spectral and imaging reconstruction.To implement this strategy,we leverage self-assembled colloidal quantum dots(CQDs)and a digital micromirror device(DMD)for NIR spectral and spatial information multiplexing,complemented by single-pixel detection for simultaneous spectral and image reconstruction.Our experimental results demonstrate successful NIR hyperspectral imaging with a detection window about 600 nm and an average spectral resolution of 8.6 nm with a pixel resolution of 128×128.The resulting spectral and spatial data align well with reference instruments,which validates the effectiveness of our approach.By circumventing the need for expensive and bulky FPA and wavelength selection components,our solution shows promise in advancing affordable and accessible NIR hyperspectral imaging technologies,thereby expanding the range of potential applications.
基金Financial support for this project was provided by the National Natural Science Foundation of China (Nos.51702023,51702022)Natural Science Research of Jiangsu Higher Education Institutions of China (No.17KJB430001)。
文摘Light utilization is one of the key factors for the improvement of photocatalytic perfo rmance.He rein,we design C-TiO_(2) hollow nanoshells with strong Mie resonance for enhanced photocatalytic hydrogen evolution in a dye-sensitized system under visible light irradiation(λ≥420 nm).By tuning the inner diameters of hollow nanoshells,the Mie resonance in hollow nanoshells is adjusted for better excitation of dye molecules,which thus greatly enhances the light utilization in visible light region.This work shows the potential of Mie resonance in nanoshells can be an alternative strategy to increase the light utilization for photocatalysis.