Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi...Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.展开更多
In the present work,a zinc-based metal-organic framework{[Zn(ddpd)_(0.5)(bipy)_(0.5)]·H_(2)O]}_(n)(1-Zn)(where ddpd=2,5-di(2',4'-dic arboxylphenyl)-1,4-difluorobenzene,bipy=4,4-bipyridine)was synthesized ...In the present work,a zinc-based metal-organic framework{[Zn(ddpd)_(0.5)(bipy)_(0.5)]·H_(2)O]}_(n)(1-Zn)(where ddpd=2,5-di(2',4'-dic arboxylphenyl)-1,4-difluorobenzene,bipy=4,4-bipyridine)was synthesized by a solvothermal method.Complex 1-Zn features a threedimensional(2,4,6)-connected network with{4^2.6^2.8^2}_(2){4^4.6^6.8^5}{6}topology.Meanwhile,without the assistance of other reagents,complex 1-Zn not only exhibited an exceeded 95%photodegradation efficiency for rhodamine B(Rh B),methyl blue(MB)and methyl orange(MO)within 40 min,but also showed high stability and recyclability.In addition,free radical quenching experiments and electron spin resonance(ESR)spectroscopy verified that the main active species in the photodegradation process were·O_(2)^(-)and OH,and a more indepth degradation mechanism was further elucidated by density functional theory(DFT)calculations.展开更多
In this study,we extend traditional(single-target)hybrid systems to multi-target hybrid systems with a focus on the multi-maneuvering-target tracking system.This system consists of a continuous state,a discrete and sw...In this study,we extend traditional(single-target)hybrid systems to multi-target hybrid systems with a focus on the multi-maneuvering-target tracking system.This system consists of a continuous state,a discrete and switchable state,and a discrete,time-constant,and unique state.By defining a new generalized labeled multi-Bernoulli density,we prove that it is closed under the Chapman-Kolmogorov prediction and Bayes update for multi-target hybrid systems.In other words,we provide the exact derivation of a solution to this system,i.e.,the multi-model generalized labeled multi-Bemoulli filter,which has been developed without strict proof.展开更多
基金supported by the National Natural Science Foundation of China (22008098, 21978156, 42002040)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN004)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (22HASTIT008)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K34)。
文摘Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.
基金the financial support of this work by the National Natural Science Foundation of China(No.U1904199)the Program for Science&Technology Innovation Team in Universities of Henan Province(No.21IRTSTHN004)+3 种基金the Program for Science and Technology Innovation Talents at the University of Henan Province(No.22HASTIT007)Science Foundation for Excellent Youth of Henan Province(No.212300410064)the Young Backbone Teachers in Colleges and Universities of Henan Province(No.2018GGJS119)Nanyang Normal University。
文摘In the present work,a zinc-based metal-organic framework{[Zn(ddpd)_(0.5)(bipy)_(0.5)]·H_(2)O]}_(n)(1-Zn)(where ddpd=2,5-di(2',4'-dic arboxylphenyl)-1,4-difluorobenzene,bipy=4,4-bipyridine)was synthesized by a solvothermal method.Complex 1-Zn features a threedimensional(2,4,6)-connected network with{4^2.6^2.8^2}_(2){4^4.6^6.8^5}{6}topology.Meanwhile,without the assistance of other reagents,complex 1-Zn not only exhibited an exceeded 95%photodegradation efficiency for rhodamine B(Rh B),methyl blue(MB)and methyl orange(MO)within 40 min,but also showed high stability and recyclability.In addition,free radical quenching experiments and electron spin resonance(ESR)spectroscopy verified that the main active species in the photodegradation process were·O_(2)^(-)and OH,and a more indepth degradation mechanism was further elucidated by density functional theory(DFT)calculations.
基金Project supported by the National Natural Science Foundation of China(No.61601510)the Young Talent Support Project of China Association for Science and Technology(No.18-JCJQ-QT-008)。
文摘In this study,we extend traditional(single-target)hybrid systems to multi-target hybrid systems with a focus on the multi-maneuvering-target tracking system.This system consists of a continuous state,a discrete and switchable state,and a discrete,time-constant,and unique state.By defining a new generalized labeled multi-Bernoulli density,we prove that it is closed under the Chapman-Kolmogorov prediction and Bayes update for multi-target hybrid systems.In other words,we provide the exact derivation of a solution to this system,i.e.,the multi-model generalized labeled multi-Bemoulli filter,which has been developed without strict proof.