The pear is an economic fruit that is widely planted around the world and is loved by people for its rich nutritional value. Autophagy is a self-protection mechanism in eukaryotes, and its occurrence often accompanied...The pear is an economic fruit that is widely planted around the world and is loved by people for its rich nutritional value. Autophagy is a self-protection mechanism in eukaryotes, and its occurrence often accompanied by the degradation of damaged substances in cells and the recycling of nutrients. Autophagy is one of the mechanisms through which plants respond to environmental stress and plays an important role in plant development and stress resistance. Functional studies of autophagy-related genes (ATGs) have been performed on a variety of plant species, but little information is available on the ATG family in pear (Pyrus bretschneideri Rehd). Therefore, we analyzed the evolutionary dynamics and performed a genome-wide characterization of the PbrATG gene family. A total of 28 PbrATG members were identified.Phylogenetic analysis showed that PbrATGs were more closely related to ATGs of European pear and apple. Evolutionary analysis revealed that whole-genome duplication (WGD) and dispersed duplication events were the main driving forces of PbrATG family expansion.Expression analysis of different pear tissues showed that all the genes were expressed in different pear tissues, and different PbrATGs are expressed at different times and in different locations. Moreover, all PbrATGs also responded to different abiotic stresses, especially salt and drought stress, which elicited the highest expression levels. Pear seedlings were subsequently infected with Botryosphaeria dothidea (B.dothidea). The results showed that different PbrATGs had different expression patterns at different infection stages. According to the gene expression data, PbrATG1a was selected as a key autophagy gene for further analysis. Silencing of PbrATG1a reduced the resistance of pear to B. dothidea, which resulted in increased lesions, reactive oxygen species (ROS) contents, antioxidant enzyme activity, and gene expression levels in the silenced pear seedlings after B. dothidea inoculation. In this study, a comprehensive bioinformatic analysis of ATGs was conducted, and the functions of PbrATGs in pear development and in response to stress were elucidated, which laid a foundation for further study of the molecular mechanism of autophagy and a new strategy for pear resistance breeding.展开更多
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab...Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.展开更多
Background:Both simvastatin and metformin have demonstrated potential efficacy in osteoporosis(OP)treatment.However,there is a lack of systematic studies comparing their anti-osteoporotic effects.This study aims to co...Background:Both simvastatin and metformin have demonstrated potential efficacy in osteoporosis(OP)treatment.However,there is a lack of systematic studies comparing their anti-osteoporotic effects.This study aims to compare the effects of simvastatin and metformin on OP through Mendelian randomization(MR)studies and animal experiments.Methods:Initially,we will analyze the causal impact of simvastatin or metformin treatment on OP prevalence and three common clinical OP diagnostic markers(bone mineral density(BMD),serum osteocalcin(OCN),and tartrate-resistant acid phosphatase(TRAP)levels)using genome-wide association study(GWAS)summary statistics.Additionally,we established animal models to further analyze and compare the anti-osteoporosis effects of simvastatin and metformin.8 male C57BL/6J mice(3-month-old)and 24 male C57BL/6J mice(18-month-old)were treated with simvastatin or metformin for 12 weeks.OP pathology was assessed using histology,immunohistochemistry,biomechanical tests,micro-computed tomography,and osteogenic differentiation assays.Results:In the MR analysis,metformin treatment was significantly associated with lower OP prevalence(OR(95%CI)=0.933(0.902–0.965),β=-0.0694,P<0.001)and higher BMD(OR(95%CI)=3.719(1.750–7.908),β=1.3136,P<0.001).In the animal experiment,both drugs increased bone mass,improved bone microstructure,and promoted osteoblast differentiation.However,metformin appeared more effective in several aspects.It significantly inhibited bone marrow adipocyte and osteoclast differentiation in aged mice compared to simvastatin.Additionally,metformin better promoted the expression of osteoprotegerin(OPG)and collagen type I(Col-I)in bone tissue and maintained the structure and biomechanical properties of cancellous bone.Conclusion:Both drugs significantly preserved bone homeostasis.Particularly,compared with simvastatin,metformin exhibited superior effects in inhibiting adipogenesis,enhancing the OPG/RANKL pathway,and promoting cancellous bone reconstruction.Metformin may serve as a valuable adjunct in preventing and treating OP in the elderly.展开更多
Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy ...Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy and safety of axial load-share ratio(ALSR)testing to evaluate callus healing strength after TSF treatment of open tibial fractures.Methods:A retrospective case-control study was conducted,analyzing 180 adult patients with open tibial fractures treated at Tianjin Hospital’s Orthopedic Limb Correction Unit between August 2019 and August 2022.All patients underwent TSF external fixation surgery,and were divided into two groups based on ALSR testing.Group I(92 patients)underwent ALSR testing,with frame removal if the test value fell below 5%.Traditional methods were used for fixator removal guidance in Group II(88 patients).Clinical outcomes,including fixation duration,complications after fixator removal,and Johner-Wruhs functional scores,were compared between the two groups.Results:The groups showed no statistically significant differences(P>0.05)in sex,age,injury side,body mass index,surgery timing,or fracture type.Group I had a significantly shorter fixation duration(25.85±5.57 weeks)compared to Group II(31.82±6.98 weeks)(P<0.05).Following fixator removal,Group I demonstrated superior Johner-Wruhs scores compared to Group II,indicating better outcomes(P<0.05).Complication rates did not differ significantly between the groups at the last follow-up(P>0.05).Conclusion:Regular postoperative ALSR testing could safely and effectively guide TSF removal following open tibial fracture treatment.This method significantly reduced fixation duration compared to traditional guidance methods while maintaining efficacy and safety.展开更多
Gene therapy constitutes a promising strategy for the treatment of osteoarthritis (OA). We assessed the use of electroporation (EP) of non-viral gene vectors, and compared its efficacy with that of adeno-associated vi...Gene therapy constitutes a promising strategy for the treatment of osteoarthritis (OA). We assessed the use of electroporation (EP) of non-viral gene vectors, and compared its efficacy with that of adeno-associated virus (AAV) vectors. EP- and AAV-mediated delivery of human interleukin-1 receptor antagonist (hIL-1Ra) was localized performed in the joints of rats following induction of OA. mRNA levels for hIL-1Ra, IL-1β, TNF-α, MMP-13 and ADAMTS-4 in the cartilage and synovial tissues were analyzed. Structural analyses of the subchondral bone at the medial femoral condyle were performed by Micro-CT after treatment. Knee joint specimens were staining with hematoxylin and eosin and Saffron O. Induction of hIL-1Ra by both EP and AAV inhibited inflammatory-induced sub-chondral bone reconstruction, and effectively suppressed IL-1β activity, as evidenced by decreased expression of MMP-13 and ADAMTS-4. Histological analyses revealed significant protection of cartilage, proteoglycan by EP and AAV. hIL-1Ra expression was similar in both the EP and AAV groups. Notably, this gene is not easier degraded transduced by EP compared with AAV. Taken together, these results show that EP offers transfection efficiency comparable to that of AAV, with the potential for longer gene expression, making EP a promising candidate for efficient non-viral delivery of OA gene therapy.展开更多
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regen...Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.展开更多
The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algori...The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algorithm is proposed to protect medical audio data.The scheme decomposes the medical audio into two independent embedding domains,embeds the robust watermark and the reversible watermark into the two domains respectively.In order to ensure the audio quality,the Hurst exponent is used to find a suitable position for watermark embedding.Due to the independence of the two embedding domains,the embedding of the second-stage reversible watermark will not affect the first-stage watermark,so the robustness of the first-stage watermark can be well maintained.In the second stage,the correlation between the sampling points in the medical audio is used to modify the hidden bits of the histogram to reduce the modification of the medical audio and reduce the distortion caused by reversible embedding.Simulation experiments show that this scheme has strong robustness against signal processing operations such as MP3 compression of 48 db,additive white Gaussian noise(AWGN)of 20 db,low-pass filtering,resampling,re-quantization and other attacks,and has good imperceptibility.展开更多
AIM: To evaluate the number of bone marrow mononuclear cells (BMMC) that are migrated to the liver following transplantation of murine BMMC into mice with acute liver injury.METHODS: BMMC were isolated from the bo...AIM: To evaluate the number of bone marrow mononuclear cells (BMMC) that are migrated to the liver following transplantation of murine BMMC into mice with acute liver injury.METHODS: BMMC were isolated from the bone marrow of mice in a lymphocyte separation medium and then labeled with PKH26. The labeled cells were subsequently infused into the caudal veins of BALB/c mice with hepatic injury induced by carbon tetrachloride and 2-acetylaminofluorene. Mice in experimental group were treated with stromal cell-derived factor-1 (SDF-1) which was injected intraperitoneally after trans- plantation of BMMC. Mice in control group were injected intraperitoneally with 0.1 mL of saline (0.9% NaCl) after transplantation of BMMC. After 2 wk, migration of the cells in experimental group was studied by fluorescence microscopy. The expression of proliferating cell nuclear antigen and albumin was quantified with manual methods in both groups. The serum transaminase levels at different time points were compared between the two groups.RESULTS: The labeled "cells" were found in the portal region and central veins of hepatic Iobules. The PKH26labeled cells appeared at an average frequency of 108 ± 8/high power field in the experiment group and 65 ± 8/high power field in the control group (P 〈 0.05). The total number of positive cells was 29 ± 7/high power field in the experimental group and 13 ± 2/high power field in the control group. The albumin expression level was also higher in the experimental group than in the control group (29 ± 7 vs 13 ± 2, P 〈 0.05). The total number of crossing points was 156 ± 5/high power field in the experimental group and 53 ± 5/high power field in the control group (P 〈 0.05). The serum alanine aminotransferase levels in experimental and control groups were measured at different time points (120 ± 40 vs 118.50 ± 1.75, P 〉 0.05; 80.60 ± 6.50 vs 101.08 ± 5.67, P 〈 0.05; 50.74 ± 5.38 vs 80.47 ± 4.62, P 〈 0.05; 30.54 ± 2.70 vs 60.72 ± 4.37, P 〈 0.05; 30.77 ± 5.36 vs 40.47 ± 6.50, P 〈 0.05). At the same time, the serum aspartate aminotransferase levels were measured in experimental and control groups at different time points (122.55 ± 1.46 vs 120.70 ± 4.22, P 〉 0.05; 54.26 ± 6.50 vs 98.70 ± 8.20, P 〈 0.05; 39.47 ± 5.39 vs 78.34 ± 4.50, P 〈 0.05; 28.94 ±2.70 vs 56.44 ± 4.28, P 〈 0.05; 30.77 ± 5.45 vs 42.50 ± 6.28, P 〈 0.05).CONCLUSION: SDF-1 can promote the migration of BMMC to the liver of mice with acute liver failure.展开更多
High temperature is an abiotic stress factor that threatens plant growth and development.Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes.Previously,we showed that ...High temperature is an abiotic stress factor that threatens plant growth and development.Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes.Previously,we showed that a crucial autophagy protein from apple,MdATG18a,has a positive effect on drought tolerance.In the present study,we treated transgenic apple(Malus domestica)plants overexpressing MdATG18a with high temperature and found that autophagy protected them from heat stress.Overexpression of MdATG18a in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress.Transgenic apple plants exhibited higher photosynthetic capacity,as shown by the rate of CO_(2) assimilation,the maximum photochemical efficiency of photosystem II(PSII),the effective quantum yield,and the electron transport rates in photosystems I and II(PSI and PSII,respectively).We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants.In addition,the transcriptional activities of several HSP genes were increased in transgenic apple plants.In summary,we propose that autophagy plays a critical role in basal thermotolerance in apple,primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage.展开更多
A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors...A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors for regenerative success.Therefore,it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury.However,the identities of specific cytokines at various time points after sciatic nerve injury have not been determined.The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze,by protein microarray,the expression of different cytokines in the distal nerve after injury.Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines,e.g.,ciliary neurotrophic factor,were downregulated.The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines.Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways,Janus kinase/signal transducers and activators of transcription,phosphoinositide 3-kinase/protein kinase B,and notch signaling pathway.The cytokines involved in inflammation,immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes,cell-cell adhesion,and cell proliferation were up-regulated at 28 days after injury.Western blot analysis showed that the expression and changes of hepatocyte growth factor,glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis.The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration,as well as a basis for potential treatments of peripheral nerve injury.The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital,China(approval number:2016-x9-07)in September 2016.展开更多
Marssonina apple blotch,caused by Diplocarpon mali,is one of the most serious diseases of apple.Autophagy plays a key role in pathogen resistance.We previously showed that MdATG18a has a positive influence on drought ...Marssonina apple blotch,caused by Diplocarpon mali,is one of the most serious diseases of apple.Autophagy plays a key role in pathogen resistance.We previously showed that MdATG18a has a positive influence on drought tolerance.Herein,we describe how overexpression(OE)of MdATG18a enhances resistance to D.mali infection,probably because less H2O2 but more salicylic acid(SA)is accumulated in the leaves of OE apple plants.Expression of chitinase,β-1,3-glucanase,and SA-related marker genes was induced more strongly by D.mali in OE lines.Transcript levels of other important MdATG genes were also drastically increased by D.mali in OE plants,which indicated increased autophagy activities.Taken together,these results demonstrate that OE of MdATG18a enhances resistance to infection by D.mali and plays positive roles in H2O2-scavenging and SA accumulations.Our findings provide important information for designing strategies which could induce autophagy to minimize the impact of this disease on apple production.展开更多
Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur(Li-S)batteries.Herein,high-ind...Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur(Li-S)batteries.Herein,high-index faceted iron oxide(Fe_(2)O_(3))nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts,effectively improving the electrochemical performance of Li-S batteries.The theoretical and experimental results all indicate that high-index Fe_(2)O_(3)crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li_(2)S.The Li-S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g^(-1)at 0.1 C and excellent cycling performance with a low capacity fading of 0.025%per cycle during 1600 cycles at 2 C.Even with a high sulfur loading of 9.41 mg cm^(-2),a remarkable areal capacity of 7.61 mAh cm^(-2)was maintained after 85 cycles.This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering,deepening the comprehending of facet-dependent activity of catalysts in Li-S chemistry,affording a novel perspective for the design of advanced sulfur electrodes.展开更多
Nickel-based superalloy lattice sandwich structures present higher stiffness,higher strength and higher temperature resistance in comparison with other metals.In this study,the Kagome unit was adopted to design the la...Nickel-based superalloy lattice sandwich structures present higher stiffness,higher strength and higher temperature resistance in comparison with other metals.In this study,the Kagome unit was adopted to design the lattice sandwich structure and ProCAST software was used to simulate the filling and solidification processes of the nickel-based superalloy.Grain morphology and sizes of the nickel-based superalloy lattice sandwich structures were simulated by using of cellular automaton coupled with finite element model(CAFE),and indirect additive manufacture combining with investment casting were carried out to fabricate the nickel-based superalloy lattice sandwich structures.The calculated grain morphology and sizes are in good agreement with the experimental results.The grains are mainly equiaxed with an average size of about 500µm.The simulated results also show that the superheat of melting and the mold preheated temperature have significant influence on the grain size of the Kagome lattice sandwich structures,lower superheat of melting and mold preheated temperatures are encouraged to obtain the fine grains while assuring the integrity of the Kagome lattice sandwich structures for industrial application.展开更多
The use of low-coherence light is expected to be one of the effective ways to suppress or even eliminate the laser–plasma instabilities that arise in attempts to achieve inertial confinement fusion.In this paper,a re...The use of low-coherence light is expected to be one of the effective ways to suppress or even eliminate the laser–plasma instabilities that arise in attempts to achieve inertial confinement fusion.In this paper,a review of low-coherence high-power laser drivers and related key techniques is first presented.Work at typical low-coherence laser facilities,including Gekko XII,PHEBUS,Pharos III,and Kanal-2 is described.The many key techniques that are used in the research and development of low-coherence laser drivers are described and analyzed,including low-coherence source generation,amplification,harmonic conversion,and beam smoothing of low-coherence light.Then,recent progress achieved by our group in research on a broadband low-coherence laser driver is presented.During the development of our low-coherence high-power laser facility,we have proposed and implemented many key techniques for working with low-coherence light,including source generation,efficient amplification and propagation,harmonic conversion,beam smoothing,and precise beam control.Based on a series of technological breakthroughs,a kilojoule low-coherence laser driver named Kunwu with a coherence time of only 300 fs has been built,and the first round of physical experiments has been completed.This high-power laser facility provides not only a demonstration and verification platform for key techniques and system integration of a low-coherence laser driver,but also a new type of experimental platform for research into,for example,high-energy-density physics and,in particular,laser–plasma interactions.展开更多
AIM To assess the effect of sodium selenite on the severity of dextran sulfate sodium(DSS)-induced colitis in C57BL/6 mice.METHODS Mice were randomly divided into four groups(n = 10/group): normal group, selenium(Se) ...AIM To assess the effect of sodium selenite on the severity of dextran sulfate sodium(DSS)-induced colitis in C57BL/6 mice.METHODS Mice were randomly divided into four groups(n = 10/group): normal group, selenium(Se) group, chronic colitis group, and Se + chronic colitis group. The mice were sacrificed on day 26. Survival rates, clinical symptoms, colon length, and histological changes were determined. The percentages and absolute numbers of immune system cells in the lamina propria lymphocytes(LPL) of the colon, the expression of m RNA in colon tissue, and the concentrations of Th1, Th17, and Treg cytokines in LPL from the large intestine, were measured.RESULTS Se significantly ameliorated the symptoms of colitis and histological injury(P < 0.05 each), increasing the proportions of neutrophils and CD4+ CD25+ T cells(P < 0.05 each) and decreasing the proportions of γδT cells, CD4+, CD4+CD44+, and CD4+ CD69+ T cells in LPL(P < 0.05 each). Moreover, Se reduced the expression of IL-6, IFN-γ, IL-17 A, IL-21, T-bet, and RORγt(P < 0.05 each), but enhanced the expression of IL-10 and Foxp3(P < 0.05 each). CONCLUSION These results suggest that Se protects against DSSinduced chronic colitis perhaps by increasing the number of CD4(+)CD25(+) Tregs that suppress the secretion of proinflammatory cytokines and populations of Th1, Th17, and γδT cells.展开更多
The extracellular matrix,which includes collagens,laminin,or fibronectin,plays an important role in peripheral nerve regeneration.Recently,a Schwann cell-derived extracellular matrix with classical biomaterial was use...The extracellular matrix,which includes collagens,laminin,or fibronectin,plays an important role in peripheral nerve regeneration.Recently,a Schwann cell-derived extracellular matrix with classical biomaterial was used to mimic the neural niche.However,extensive clinical use of Schwann cells remains limited because of the limited origin,loss of an autologous nerve,and extended in vitro culture times.In the present study,human umbilical cord-derived mesenchymal stem cells(h UCMSCs),which are easily accessible and more proliferative than Schwann cells,were used to prepare an extracellular matrix.We identified the morphology and function of h UCMSCs and investigated their effect on peripheral nerve regeneration.Compared with a non-coated dish tissue culture,the h UCMSC-derived extracellular matrix enhanced Schwann cell proliferation,upregulated gene and protein expression levels of brain-derived neurotrophic factor,glial cell-derived neurotrophic factor,and vascular endothelial growth factor in Schwann cells,and enhanced neurite outgrowth from dorsal root ganglion neurons.These findings suggest that the h UCMSC-derived extracellular matrix promotes peripheral nerve repair and can be used as a basis for the rational design of engineered neural niches.展开更多
Six amphiphilic cholesterylated thiogalactosides la-f with high affinity for the asialoglycoprotein receptor have been synthesized by coupling 2,3,4,6-tetra -O-acetyl-l-thio-β-D-galactopyranose 8 with prepared choles...Six amphiphilic cholesterylated thiogalactosides la-f with high affinity for the asialoglycoprotein receptor have been synthesized by coupling 2,3,4,6-tetra -O-acetyl-l-thio-β-D-galactopyranose 8 with prepared cholesterol derivatives 7a-f, then by deacetylating. Preliminary results show liposomes containing those galactosides derivatives exhibited higher affinity and transfection activity in hepatoma cells HepG2 and SMMC-7721.展开更多
Water deficit is one of the major limiting factors for apple(Malus domestica)production on the Loess Plateau,a major apple cultivation area in China.The identification of genes related to the regulation of water use e...Water deficit is one of the major limiting factors for apple(Malus domestica)production on the Loess Plateau,a major apple cultivation area in China.The identification of genes related to the regulation of water use efficiency(WUE)is a crucial aspect of crop breeding programs.As a conserved degradation and recycling mechanism in eukaryotes,autophagy has been reported to participate in various stress responses.However,the relationship between autophagy and WUE regulation has not been explored.We have shown that a crucial autophagy protein in apple,MdATG8i,plays a role in improving salt tolerance.Here,we explored its biological function in response to long-term moderate drought stress.The results showed that MdATG8i-overexpressing(MdATG8i-OE)apple plants exhibited higher WUE than wild-type(WT)plants under long-term moderate drought conditions.Plant WUE can be increased by improving photosynthetic efficiency.Osmoregulation plays a critical role in plant stress resistance and adaptation.Under long-term drought conditions,the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants.The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture,organized chloroplasts,and strong antioxidant activity.MdATG8i overexpression also promoted autophagic activity,which was likely related to the changes described above.In summary,our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis,effective osmotic adjustment processes,and strong autophagic activity.展开更多
A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-amino...A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-aminoterephthalic acid. The novel UiO-66-NH_(2) aerogel also exhibits high specific surface area and mesopore-dominated structure, implying its highly potential use in CO_(2) adsorption. For ulteriorly investigating the effect of amine loading on the CO_(2) adsorption ability, a series of UiO-66-NH_(2) aerogel with different amino content is fabricated by changing the ligand/metal molar ratio. When the molar ratio is 1.45, the CO_(2) adsorption capacity reaches the optimum value of 2.13 mmol·g^(-1) at 25 ℃ and 0.1 MPa, which is 12.2% higher than that of pure UiO-66 aerogel. Additionally, UiO-66-NH_(2)-1.45 aerogel also has noticeable CO_(2) selectivity against N_(2) and CH_(4) as well as good regeneration stability. Such results imply that it has good application prospect in the field of CO_(2) adsorption, and also contains the potential to be applied in catalysis, separation and other fields.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.31901989)Natural Science Foundation of Jiangsu Province (Grant No.BK20190534)+1 种基金China Postdoctoral Science Foundation (Grant No.2021T140332)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_0584)。
文摘The pear is an economic fruit that is widely planted around the world and is loved by people for its rich nutritional value. Autophagy is a self-protection mechanism in eukaryotes, and its occurrence often accompanied by the degradation of damaged substances in cells and the recycling of nutrients. Autophagy is one of the mechanisms through which plants respond to environmental stress and plays an important role in plant development and stress resistance. Functional studies of autophagy-related genes (ATGs) have been performed on a variety of plant species, but little information is available on the ATG family in pear (Pyrus bretschneideri Rehd). Therefore, we analyzed the evolutionary dynamics and performed a genome-wide characterization of the PbrATG gene family. A total of 28 PbrATG members were identified.Phylogenetic analysis showed that PbrATGs were more closely related to ATGs of European pear and apple. Evolutionary analysis revealed that whole-genome duplication (WGD) and dispersed duplication events were the main driving forces of PbrATG family expansion.Expression analysis of different pear tissues showed that all the genes were expressed in different pear tissues, and different PbrATGs are expressed at different times and in different locations. Moreover, all PbrATGs also responded to different abiotic stresses, especially salt and drought stress, which elicited the highest expression levels. Pear seedlings were subsequently infected with Botryosphaeria dothidea (B.dothidea). The results showed that different PbrATGs had different expression patterns at different infection stages. According to the gene expression data, PbrATG1a was selected as a key autophagy gene for further analysis. Silencing of PbrATG1a reduced the resistance of pear to B. dothidea, which resulted in increased lesions, reactive oxygen species (ROS) contents, antioxidant enzyme activity, and gene expression levels in the silenced pear seedlings after B. dothidea inoculation. In this study, a comprehensive bioinformatic analysis of ATGs was conducted, and the functions of PbrATGs in pear development and in response to stress were elucidated, which laid a foundation for further study of the molecular mechanism of autophagy and a new strategy for pear resistance breeding.
基金supported in part by the National Natural Science Foundation of China(Grant No.62104056)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21F010010)+4 种基金the National Natural Science Foundation of China(Grant Nos.62141409 and 62204204)the National Key R&D Program of China(Grant No.2022ZD0208602)the Zhejiang Provincial Key Research&Development Fund(Grant Nos.2019C04003 and 2021C01041)the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001).
文摘Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.
基金funded by the Applied Basic Research Foundation of Tianjin(22JCQNJC00230)the Beijing-Tianjin-Hebei Basic Research Cooperation Project(23JCZXJC00050/J230007)the Tianjin Health and Technology Project(TJWJ2024QN056)。
文摘Background:Both simvastatin and metformin have demonstrated potential efficacy in osteoporosis(OP)treatment.However,there is a lack of systematic studies comparing their anti-osteoporotic effects.This study aims to compare the effects of simvastatin and metformin on OP through Mendelian randomization(MR)studies and animal experiments.Methods:Initially,we will analyze the causal impact of simvastatin or metformin treatment on OP prevalence and three common clinical OP diagnostic markers(bone mineral density(BMD),serum osteocalcin(OCN),and tartrate-resistant acid phosphatase(TRAP)levels)using genome-wide association study(GWAS)summary statistics.Additionally,we established animal models to further analyze and compare the anti-osteoporosis effects of simvastatin and metformin.8 male C57BL/6J mice(3-month-old)and 24 male C57BL/6J mice(18-month-old)were treated with simvastatin or metformin for 12 weeks.OP pathology was assessed using histology,immunohistochemistry,biomechanical tests,micro-computed tomography,and osteogenic differentiation assays.Results:In the MR analysis,metformin treatment was significantly associated with lower OP prevalence(OR(95%CI)=0.933(0.902–0.965),β=-0.0694,P<0.001)and higher BMD(OR(95%CI)=3.719(1.750–7.908),β=1.3136,P<0.001).In the animal experiment,both drugs increased bone mass,improved bone microstructure,and promoted osteoblast differentiation.However,metformin appeared more effective in several aspects.It significantly inhibited bone marrow adipocyte and osteoclast differentiation in aged mice compared to simvastatin.Additionally,metformin better promoted the expression of osteoprotegerin(OPG)and collagen type I(Col-I)in bone tissue and maintained the structure and biomechanical properties of cancellous bone.Conclusion:Both drugs significantly preserved bone homeostasis.Particularly,compared with simvastatin,metformin exhibited superior effects in inhibiting adipogenesis,enhancing the OPG/RANKL pathway,and promoting cancellous bone reconstruction.Metformin may serve as a valuable adjunct in preventing and treating OP in the elderly.
基金funding support from Natural Science Foundation Key Project of Tianjin(20JCZDJC00600)Tianjin Health Research Project(TJWJ2023QN050)+2 种基金Applied Basic Research Foundation of Tianjin(22JCQNJC00230,22JCQNJC00360)Beijing-Tianjin-Hebei Basic Research Cooperation Project(J230007/23JCZXJC00050)Tianjin Municipal Health Commission Key Discipline Specialization(TJWJ2024XK015).
文摘Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy and safety of axial load-share ratio(ALSR)testing to evaluate callus healing strength after TSF treatment of open tibial fractures.Methods:A retrospective case-control study was conducted,analyzing 180 adult patients with open tibial fractures treated at Tianjin Hospital’s Orthopedic Limb Correction Unit between August 2019 and August 2022.All patients underwent TSF external fixation surgery,and were divided into two groups based on ALSR testing.Group I(92 patients)underwent ALSR testing,with frame removal if the test value fell below 5%.Traditional methods were used for fixator removal guidance in Group II(88 patients).Clinical outcomes,including fixation duration,complications after fixator removal,and Johner-Wruhs functional scores,were compared between the two groups.Results:The groups showed no statistically significant differences(P>0.05)in sex,age,injury side,body mass index,surgery timing,or fracture type.Group I had a significantly shorter fixation duration(25.85±5.57 weeks)compared to Group II(31.82±6.98 weeks)(P<0.05).Following fixator removal,Group I demonstrated superior Johner-Wruhs scores compared to Group II,indicating better outcomes(P<0.05).Complication rates did not differ significantly between the groups at the last follow-up(P>0.05).Conclusion:Regular postoperative ALSR testing could safely and effectively guide TSF removal following open tibial fracture treatment.This method significantly reduced fixation duration compared to traditional guidance methods while maintaining efficacy and safety.
文摘Gene therapy constitutes a promising strategy for the treatment of osteoarthritis (OA). We assessed the use of electroporation (EP) of non-viral gene vectors, and compared its efficacy with that of adeno-associated virus (AAV) vectors. EP- and AAV-mediated delivery of human interleukin-1 receptor antagonist (hIL-1Ra) was localized performed in the joints of rats following induction of OA. mRNA levels for hIL-1Ra, IL-1β, TNF-α, MMP-13 and ADAMTS-4 in the cartilage and synovial tissues were analyzed. Structural analyses of the subchondral bone at the medial femoral condyle were performed by Micro-CT after treatment. Knee joint specimens were staining with hematoxylin and eosin and Saffron O. Induction of hIL-1Ra by both EP and AAV inhibited inflammatory-induced sub-chondral bone reconstruction, and effectively suppressed IL-1β activity, as evidenced by decreased expression of MMP-13 and ADAMTS-4. Histological analyses revealed significant protection of cartilage, proteoglycan by EP and AAV. hIL-1Ra expression was similar in both the EP and AAV groups. Notably, this gene is not easier degraded transduced by EP compared with AAV. Taken together, these results show that EP offers transfection efficiency comparable to that of AAV, with the potential for longer gene expression, making EP a promising candidate for efficient non-viral delivery of OA gene therapy.
基金supported by the National Natural Science Foundation of China,No.31100696,31170946a grant from the National High Technology Research and Development Program of China(863 Program),No.2012AA020502+1 种基金a grant from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201a grant from Beijing Metropolis Beijing Nova Program,No.2011115
文摘Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.
基金This work was supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.Conflicts of Interest:The aut。
文摘The leakage of medical audio data in telemedicine seriously violates the privacy of patients.In order to avoid the leakage of patient information in telemedicine,a two-stage reversible robust audio watermarking algorithm is proposed to protect medical audio data.The scheme decomposes the medical audio into two independent embedding domains,embeds the robust watermark and the reversible watermark into the two domains respectively.In order to ensure the audio quality,the Hurst exponent is used to find a suitable position for watermark embedding.Due to the independence of the two embedding domains,the embedding of the second-stage reversible watermark will not affect the first-stage watermark,so the robustness of the first-stage watermark can be well maintained.In the second stage,the correlation between the sampling points in the medical audio is used to modify the hidden bits of the histogram to reduce the modification of the medical audio and reduce the distortion caused by reversible embedding.Simulation experiments show that this scheme has strong robustness against signal processing operations such as MP3 compression of 48 db,additive white Gaussian noise(AWGN)of 20 db,low-pass filtering,resampling,re-quantization and other attacks,and has good imperceptibility.
文摘AIM: To evaluate the number of bone marrow mononuclear cells (BMMC) that are migrated to the liver following transplantation of murine BMMC into mice with acute liver injury.METHODS: BMMC were isolated from the bone marrow of mice in a lymphocyte separation medium and then labeled with PKH26. The labeled cells were subsequently infused into the caudal veins of BALB/c mice with hepatic injury induced by carbon tetrachloride and 2-acetylaminofluorene. Mice in experimental group were treated with stromal cell-derived factor-1 (SDF-1) which was injected intraperitoneally after trans- plantation of BMMC. Mice in control group were injected intraperitoneally with 0.1 mL of saline (0.9% NaCl) after transplantation of BMMC. After 2 wk, migration of the cells in experimental group was studied by fluorescence microscopy. The expression of proliferating cell nuclear antigen and albumin was quantified with manual methods in both groups. The serum transaminase levels at different time points were compared between the two groups.RESULTS: The labeled "cells" were found in the portal region and central veins of hepatic Iobules. The PKH26labeled cells appeared at an average frequency of 108 ± 8/high power field in the experiment group and 65 ± 8/high power field in the control group (P 〈 0.05). The total number of positive cells was 29 ± 7/high power field in the experimental group and 13 ± 2/high power field in the control group. The albumin expression level was also higher in the experimental group than in the control group (29 ± 7 vs 13 ± 2, P 〈 0.05). The total number of crossing points was 156 ± 5/high power field in the experimental group and 53 ± 5/high power field in the control group (P 〈 0.05). The serum alanine aminotransferase levels in experimental and control groups were measured at different time points (120 ± 40 vs 118.50 ± 1.75, P 〉 0.05; 80.60 ± 6.50 vs 101.08 ± 5.67, P 〈 0.05; 50.74 ± 5.38 vs 80.47 ± 4.62, P 〈 0.05; 30.54 ± 2.70 vs 60.72 ± 4.37, P 〈 0.05; 30.77 ± 5.36 vs 40.47 ± 6.50, P 〈 0.05). At the same time, the serum aspartate aminotransferase levels were measured in experimental and control groups at different time points (122.55 ± 1.46 vs 120.70 ± 4.22, P 〉 0.05; 54.26 ± 6.50 vs 98.70 ± 8.20, P 〈 0.05; 39.47 ± 5.39 vs 78.34 ± 4.50, P 〈 0.05; 28.94 ±2.70 vs 56.44 ± 4.28, P 〈 0.05; 30.77 ± 5.45 vs 42.50 ± 6.28, P 〈 0.05).CONCLUSION: SDF-1 can promote the migration of BMMC to the liver of mice with acute liver failure.
基金supported by the National Key Research and Development Program of China(2018YFD1000300)the Earmarked Fund for China Agriculture Research System(CARS-27).
文摘High temperature is an abiotic stress factor that threatens plant growth and development.Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes.Previously,we showed that a crucial autophagy protein from apple,MdATG18a,has a positive effect on drought tolerance.In the present study,we treated transgenic apple(Malus domestica)plants overexpressing MdATG18a with high temperature and found that autophagy protected them from heat stress.Overexpression of MdATG18a in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress.Transgenic apple plants exhibited higher photosynthetic capacity,as shown by the rate of CO_(2) assimilation,the maximum photochemical efficiency of photosystem II(PSII),the effective quantum yield,and the electron transport rates in photosystems I and II(PSI and PSII,respectively).We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants.In addition,the transcriptional activities of several HSP genes were increased in transgenic apple plants.In summary,we propose that autophagy plays a critical role in basal thermotolerance in apple,primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage.
基金supported by the National Key Research&Development Program of China,No.2017YFA0104702(to AJS)the National Basic Research Program of China(973 Program),No.2014CB542201(to JP)
文摘A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors for regenerative success.Therefore,it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury.However,the identities of specific cytokines at various time points after sciatic nerve injury have not been determined.The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze,by protein microarray,the expression of different cytokines in the distal nerve after injury.Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines,e.g.,ciliary neurotrophic factor,were downregulated.The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines.Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways,Janus kinase/signal transducers and activators of transcription,phosphoinositide 3-kinase/protein kinase B,and notch signaling pathway.The cytokines involved in inflammation,immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes,cell-cell adhesion,and cell proliferation were up-regulated at 28 days after injury.Western blot analysis showed that the expression and changes of hepatocyte growth factor,glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis.The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration,as well as a basis for potential treatments of peripheral nerve injury.The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital,China(approval number:2016-x9-07)in September 2016.
基金This work was supported by the State Key Program of the National Natural Science Foundation of China(31330068)the Young Scientists Fund of the National Natural Science Foundation of China(31601735)the earmarked fund for the China Agriculture Research System(CARS-27).
文摘Marssonina apple blotch,caused by Diplocarpon mali,is one of the most serious diseases of apple.Autophagy plays a key role in pathogen resistance.We previously showed that MdATG18a has a positive influence on drought tolerance.Herein,we describe how overexpression(OE)of MdATG18a enhances resistance to D.mali infection,probably because less H2O2 but more salicylic acid(SA)is accumulated in the leaves of OE apple plants.Expression of chitinase,β-1,3-glucanase,and SA-related marker genes was induced more strongly by D.mali in OE lines.Transcript levels of other important MdATG genes were also drastically increased by D.mali in OE plants,which indicated increased autophagy activities.Taken together,these results demonstrate that OE of MdATG18a enhances resistance to infection by D.mali and plays positive roles in H2O2-scavenging and SA accumulations.Our findings provide important information for designing strategies which could induce autophagy to minimize the impact of this disease on apple production.
基金This work was supported by the National Natural Science Foundation of China(No.22078078)the Natural Science Foundation of Heilongjiang Province(No.LH2020B008)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2019DX13).
文摘Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur(Li-S)batteries.Herein,high-index faceted iron oxide(Fe_(2)O_(3))nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts,effectively improving the electrochemical performance of Li-S batteries.The theoretical and experimental results all indicate that high-index Fe_(2)O_(3)crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li_(2)S.The Li-S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g^(-1)at 0.1 C and excellent cycling performance with a low capacity fading of 0.025%per cycle during 1600 cycles at 2 C.Even with a high sulfur loading of 9.41 mg cm^(-2),a remarkable areal capacity of 7.61 mAh cm^(-2)was maintained after 85 cycles.This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering,deepening the comprehending of facet-dependent activity of catalysts in Li-S chemistry,affording a novel perspective for the design of advanced sulfur electrodes.
基金financially supported by the National Science and Technology Major Project of China(No.2017ZA04014001)the Natural Science Foundation of Liaoning Province of China(Nos.2019-ZD-0997,20170540890)the Technology Development Fund of China Academy of Machinery Science and Technology(No.170217ZS01)
文摘Nickel-based superalloy lattice sandwich structures present higher stiffness,higher strength and higher temperature resistance in comparison with other metals.In this study,the Kagome unit was adopted to design the lattice sandwich structure and ProCAST software was used to simulate the filling and solidification processes of the nickel-based superalloy.Grain morphology and sizes of the nickel-based superalloy lattice sandwich structures were simulated by using of cellular automaton coupled with finite element model(CAFE),and indirect additive manufacture combining with investment casting were carried out to fabricate the nickel-based superalloy lattice sandwich structures.The calculated grain morphology and sizes are in good agreement with the experimental results.The grains are mainly equiaxed with an average size of about 500µm.The simulated results also show that the superheat of melting and the mold preheated temperature have significant influence on the grain size of the Kagome lattice sandwich structures,lower superheat of melting and mold preheated temperatures are encouraged to obtain the fine grains while assuring the integrity of the Kagome lattice sandwich structures for industrial application.
文摘The use of low-coherence light is expected to be one of the effective ways to suppress or even eliminate the laser–plasma instabilities that arise in attempts to achieve inertial confinement fusion.In this paper,a review of low-coherence high-power laser drivers and related key techniques is first presented.Work at typical low-coherence laser facilities,including Gekko XII,PHEBUS,Pharos III,and Kanal-2 is described.The many key techniques that are used in the research and development of low-coherence laser drivers are described and analyzed,including low-coherence source generation,amplification,harmonic conversion,and beam smoothing of low-coherence light.Then,recent progress achieved by our group in research on a broadband low-coherence laser driver is presented.During the development of our low-coherence high-power laser facility,we have proposed and implemented many key techniques for working with low-coherence light,including source generation,efficient amplification and propagation,harmonic conversion,beam smoothing,and precise beam control.Based on a series of technological breakthroughs,a kilojoule low-coherence laser driver named Kunwu with a coherence time of only 300 fs has been built,and the first round of physical experiments has been completed.This high-power laser facility provides not only a demonstration and verification platform for key techniques and system integration of a low-coherence laser driver,but also a new type of experimental platform for research into,for example,high-energy-density physics and,in particular,laser–plasma interactions.
基金Supported by National Natural Science Foundation of China,No.31370921Natural Science Foundation of Liaoning Province,No.2015020515
文摘AIM To assess the effect of sodium selenite on the severity of dextran sulfate sodium(DSS)-induced colitis in C57BL/6 mice.METHODS Mice were randomly divided into four groups(n = 10/group): normal group, selenium(Se) group, chronic colitis group, and Se + chronic colitis group. The mice were sacrificed on day 26. Survival rates, clinical symptoms, colon length, and histological changes were determined. The percentages and absolute numbers of immune system cells in the lamina propria lymphocytes(LPL) of the colon, the expression of m RNA in colon tissue, and the concentrations of Th1, Th17, and Treg cytokines in LPL from the large intestine, were measured.RESULTS Se significantly ameliorated the symptoms of colitis and histological injury(P < 0.05 each), increasing the proportions of neutrophils and CD4+ CD25+ T cells(P < 0.05 each) and decreasing the proportions of γδT cells, CD4+, CD4+CD44+, and CD4+ CD69+ T cells in LPL(P < 0.05 each). Moreover, Se reduced the expression of IL-6, IFN-γ, IL-17 A, IL-21, T-bet, and RORγt(P < 0.05 each), but enhanced the expression of IL-10 and Foxp3(P < 0.05 each). CONCLUSION These results suggest that Se protects against DSSinduced chronic colitis perhaps by increasing the number of CD4(+)CD25(+) Tregs that suppress the secretion of proinflammatory cytokines and populations of Th1, Th17, and γδT cells.
基金supported by the National Natural Science Foundation of China,Grant No.31170946the National Program on Key Basic Research Project of China(973 Program)+1 种基金Grant No.2012CB518106 and No.2014CB542201the Special Project of the“Twelfth Five-year Plan”for Medical Science Development of PLA,No.BWS13C029
文摘The extracellular matrix,which includes collagens,laminin,or fibronectin,plays an important role in peripheral nerve regeneration.Recently,a Schwann cell-derived extracellular matrix with classical biomaterial was used to mimic the neural niche.However,extensive clinical use of Schwann cells remains limited because of the limited origin,loss of an autologous nerve,and extended in vitro culture times.In the present study,human umbilical cord-derived mesenchymal stem cells(h UCMSCs),which are easily accessible and more proliferative than Schwann cells,were used to prepare an extracellular matrix.We identified the morphology and function of h UCMSCs and investigated their effect on peripheral nerve regeneration.Compared with a non-coated dish tissue culture,the h UCMSC-derived extracellular matrix enhanced Schwann cell proliferation,upregulated gene and protein expression levels of brain-derived neurotrophic factor,glial cell-derived neurotrophic factor,and vascular endothelial growth factor in Schwann cells,and enhanced neurite outgrowth from dorsal root ganglion neurons.These findings suggest that the h UCMSC-derived extracellular matrix promotes peripheral nerve repair and can be used as a basis for the rational design of engineered neural niches.
基金This work was funded by the National High Technology Research and Development Program of China(863 program,No.2001AA218021).
文摘Six amphiphilic cholesterylated thiogalactosides la-f with high affinity for the asialoglycoprotein receptor have been synthesized by coupling 2,3,4,6-tetra -O-acetyl-l-thio-β-D-galactopyranose 8 with prepared cholesterol derivatives 7a-f, then by deacetylating. Preliminary results show liposomes containing those galactosides derivatives exhibited higher affinity and transfection activity in hepatoma cells HepG2 and SMMC-7721.
基金the National Key Research and Development Program of China(2019YFD1000102)the National Natural Science Foundation of China(31972391)the earmarked fund for the China Agricultural Research System(CARS-27)。
文摘Water deficit is one of the major limiting factors for apple(Malus domestica)production on the Loess Plateau,a major apple cultivation area in China.The identification of genes related to the regulation of water use efficiency(WUE)is a crucial aspect of crop breeding programs.As a conserved degradation and recycling mechanism in eukaryotes,autophagy has been reported to participate in various stress responses.However,the relationship between autophagy and WUE regulation has not been explored.We have shown that a crucial autophagy protein in apple,MdATG8i,plays a role in improving salt tolerance.Here,we explored its biological function in response to long-term moderate drought stress.The results showed that MdATG8i-overexpressing(MdATG8i-OE)apple plants exhibited higher WUE than wild-type(WT)plants under long-term moderate drought conditions.Plant WUE can be increased by improving photosynthetic efficiency.Osmoregulation plays a critical role in plant stress resistance and adaptation.Under long-term drought conditions,the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants.The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture,organized chloroplasts,and strong antioxidant activity.MdATG8i overexpression also promoted autophagic activity,which was likely related to the changes described above.In summary,our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis,effective osmotic adjustment processes,and strong autophagic activity.
基金supported by the National Natural Science Foundation of China (21603125)Science-Education-Industry Integration Innovation Pilot Project of Qilu University of Technology (2020KJC-GH13)+2 种基金International Cooperation Project of Shandong Academy of Sciences (2019GHPY09)Natural Science Foundation of Shandong Province (ZR2019BEM025)Young doctor Cooperation Foundation of Qilu University of Technology (Shandong Academy of Sciences) (2019BSHZ0016)。
文摘A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-aminoterephthalic acid. The novel UiO-66-NH_(2) aerogel also exhibits high specific surface area and mesopore-dominated structure, implying its highly potential use in CO_(2) adsorption. For ulteriorly investigating the effect of amine loading on the CO_(2) adsorption ability, a series of UiO-66-NH_(2) aerogel with different amino content is fabricated by changing the ligand/metal molar ratio. When the molar ratio is 1.45, the CO_(2) adsorption capacity reaches the optimum value of 2.13 mmol·g^(-1) at 25 ℃ and 0.1 MPa, which is 12.2% higher than that of pure UiO-66 aerogel. Additionally, UiO-66-NH_(2)-1.45 aerogel also has noticeable CO_(2) selectivity against N_(2) and CH_(4) as well as good regeneration stability. Such results imply that it has good application prospect in the field of CO_(2) adsorption, and also contains the potential to be applied in catalysis, separation and other fields.