Solid oral controlled release formulations feature numerous clinical advantages for drug candidates with adequate solubility and dissolution rate.However,most new chemical entities exhibit poor water solubility,and he...Solid oral controlled release formulations feature numerous clinical advantages for drug candidates with adequate solubility and dissolution rate.However,most new chemical entities exhibit poor water solubility,and hence are exempt from such benefits.Although combining drug amorphization with controlled release formulation is promising to elevate drug solubility,like other supersaturating systems,the problem of drug recrystallization has yet to be resolved,particularly within the dosage form.Here,we explored the potential of an emerging,non-leachable terpolymer nanoparticle(TPN)pore former as an internal recrystallization inhibitor within controlled release amorphous solid dispersion(CRASD)beads comprising a poorly soluble drug(celecoxib)reservoir and insoluble polymer(ethylcellulose)membrane.Compared to conventional pore former,polyvinylpyrrolidone(PVP),TPN-containing membranes exhibited superior structural integrity,less crystal formation at the CRASD bead surface,and greater extent of celecoxib release.All-atom molecular dynamics analyses revealed that in the presence of TPN,intra-molecular bonding,crystal formation tendency,diffusion coefficient,and molecular flexibility of celecoxib were reduced,while intermolecular H-bonding was increased as compared to PVP.This work suggests that selection of a pore former that promotes prolonged molecular separation within a nanoporous controlled release membrane structure may serve as an effective strategy to enhance amorphicity preservation inside CRASD.展开更多
Scintillators are widely utilized in high-energy radiation detection in view of their high light yield and short fluorescence decay time.However,constrained by their current shortcomings,such as complex fabrication pr...Scintillators are widely utilized in high-energy radiation detection in view of their high light yield and short fluorescence decay time.However,constrained by their current shortcomings,such as complex fabrication procedures,high temperature,and difficulty in the large scale,it is difficult to meet the increasing demand for costeffective,flexible,and environment-friendly X-ray detection using traditional scintillators.Perovskite-related cesium copper halide scintillators have recently received multitudinous research due to their tunable emission wavelength,high photoluminescence quantum yield(PLQY),and excellent optical properties.Herein,we demonstrated a facile solution-synthesis route for indium-doped all-inorganic cesium copper iodide(Cs_(3)Cu_(2)I_(5))powders and a high scintillation yield flexible film utilizing indium-doped Cs_(3)Cu_(2)I_(5)powders.The large area flexible films achieved a PLQY as high as 90.2%by appropriately adjusting the indium doping concentration,much higher than the undoped one(73.9%).Moreover,benefiting from low self-absorption and high PLQY,the Cs_(3)Cu_(2)I_(5):In films exhibited ultralow detection limit of 56.2 n Gy/s,high spatial resolution up to 11.3 lp/mm,and marvelous relative light output with strong stability,facilitating that Cs_(3)Cu_(2)I_(5):In films are excellent candidates for X-ray medical radiography.Our work provides an effective strategy for developing environment-friendly,low-cost,and efficient scintillator films,showing great potential in the application of highperformance X-ray imaging.展开更多
Organic solar cells(OSCs)have attracted attention due to their lightweight nature,flexibility,and facile preparation using solution-based methods.Their efficiency has been further elevated by the rapid advancement of ...Organic solar cells(OSCs)have attracted attention due to their lightweight nature,flexibility,and facile preparation using solution-based methods.Their efficiency has been further elevated by the rapid advancement of nonfullerene materials,achieving individual cell efficiencies that surpass 19%.Hence,the stability of nonfullerene solar cell production must be scrutinized.The stability of the cathode interface layer significantly impacts the overall stability of OSC devices.PFN-Br,a commonly employed cathode interface material,is susceptible to degradation due to its sensitivity to environmental humidity,consequently compromising the device stability.In this study,we introduce fluorescent dye molecules,rhodamine 101,as cathode interface layers in OSCs to establish device stability and assess their universality.A comparative investigation of rhodamine 101 and PFN-Br devices demonstrates the former’s distinct advantages in terms of thermal stability,photostability,and storage stability even without encapsulation,particularly in an inert environment.By employing the Kelvin probe,we compare the work function of different cathode interface films and reveal that the work function of the rhodamine 101 interface material remains relatively unaffected by environmental factors.As a consequence,the device performance stability is significantly enhanced.The application of such fluorescent dye molecules extends the scope of cathode interface layers,amplifies device stability,and propels industrialization.展开更多
Dielectric constant(ε)is an important parameter affecting the power conversion efficiency of organic solar cells(OSC).Increasingεof bulk heterojunctions in general can benefit the performance of OSCs,as an increased...Dielectric constant(ε)is an important parameter affecting the power conversion efficiency of organic solar cells(OSC).Increasingεof bulk heterojunctions in general can benefit the performance of OSCs,as an increasedεwill reduce the influence of Coulomb interaction between weakly bound electron-hole pairs on charge-transfer states or bimolecular recombination involving mobile carriers to reduce geminate and nongeminate losses.In this review,we overview the current understandings on dielectric constant and its impacts on exciton dissociation and voltage losses in OSCs and summarize recent efforts attempting to modify the dielectric properties of OSC materials through synthetic approaches.We further discuss the commonly adopted techniques for determining the parameter ofεwith stressing the testing conditions that may affect the accuracy of results.At last,we suggest that novel experimental methods to improve the dielectric constant and resultant physical processes in OSCs will be appreciated,which helps enrich the existing strategy reservoir toward enhancement of photovoltaic efficiencies.展开更多
An auxiliary power supply(Aux-PS)has become an essential component of electronic equipment for many industrial applications,such as in motor drives,photovoltaic(PV)inverters,uninterruptible power supply(UPS)systems an...An auxiliary power supply(Aux-PS)has become an essential component of electronic equipment for many industrial applications,such as in motor drives,photovoltaic(PV)inverters,uninterruptible power supply(UPS)systems and modular multilevel converters.The introduction of 1700 V silicon carbide(SiC)metal oxide semiconductor field effect transistors(MOSFETs)is useful for such applications,providing benefits with respect to a low on-state resistance,smaller package,low switching loss and single-switching implementation.A single end flyback Aux-PS is designed for industrial applications with a wide input voltage range using 1.7 kV SiC MOSFETs.The special design tradeoffs involved in the usage of SiC MOSFETs are discussed in detail,such as those with regard to gate driving voltage selection,isolation transformer design considerations,and clamping circuit design details.A 60 W demonstration hardware is developed and tested under different working conditions.The results verify the higher efficiency and better thermal performance of the proposed hardware relative to those of traditional Si solutions.展开更多
In comparison to widely adopted bulk heterojunction(BHJ)structures for organic solar cells(OSC),exploiting the sequential deposition to form planar heterojunction(PHJ)structures enables to realize the favorable vertic...In comparison to widely adopted bulk heterojunction(BHJ)structures for organic solar cells(OSC),exploiting the sequential deposition to form planar heterojunction(PHJ)structures enables to realize the favorable vertical phase separation to facilitate charge extraction and reduce charge recombination in OSCs.However,effective tunings on the power conversion efficiency(PCE)in PHJ-OSCs are still restrained by the currently available methods.Based on a polymeric donor PBDBT-2 F(PBDBT=Poly[[4,8-bis[5-(2-ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4 H,8 H-benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]-2,5-thiophenediyl])and a non-fullerene(NF)acceptor Y6,we proposed a strategy to improve the properties of photovoltaic performances in PHJ-based OSCs through dilute dispersions of the PBDBT-2 F donor into the acceptor-dominant phase with the sequential film deposition.With the control of donor dispersions,the charge transport balance in the PHJ-OSCs is improved,leading to the expedited photocarrier sweep-out with reduced bimolecular charge recombination.As a result,a PCE of 15.4%is achieved in the PHJ-OSCs.Importantly,the PHJ solar cells with donor dispersions exhibit better thermal stability than corresponding BHJ devices,which is related to the better film morphology robustness and less affected charge sweep-out during the thermal aging.展开更多
Next-generation optoelectronics should possess lightweight and flexible characteristics,thus conforming to various types of surfaces or human skins for portable and wearable applications.Flexible photodetectors as fun...Next-generation optoelectronics should possess lightweight and flexible characteristics,thus conforming to various types of surfaces or human skins for portable and wearable applications.Flexible photodetectors as fundamental devices have been receiving increasing attention owing to their potential applications in artificial intelligence,aerospace industry,and wise information technology of 120,among which perovskite is a promising candidate as the light-harvesting material for its outstanding optical and electrical properties,remarkable mechanical flexibility,low-cost and low-temperature processing methods.To date,most of the reports have demonstrated the fabrication methods of the perovskite materials,materials engineering,applications in solar cells,light-emitting diodes,lasers,and photodetectors,strategies for device performance enhancement,few can be seen with a focus on the processing strategies of perovskite-based flexible photodetectors,which we will give a comprehensive summary,herein.To begin with,a brief introduction to the fabrication methods of perovskite(solution and vapor-based methods),device configurations(photovoltaic,photoconductor,and phototransistor),and performance parameters of the perovskite-based photodetectors are first arranged.Emphatically,processing strategies for photodetectors are presented following,including flexible substrates(i.e.,polymer,carbon cloth,fiber,paper,etc.),soft electrodes(i.e.,metal-based conductive networks,carbon-based conductive materials,and two-dimensional(2D)conductive materials,etc.),conformal encapsulation(single-layer and multilayer stacked encapsulation),low-dimensional perovskites(0D,1D,and 2D nanostructures),and elaborate device structures.Typical applications of perovskite-based flexible photodetectors such as optical communication,image sensing,and health monitoring are further exhibited to learn the flexible photodetectors on a deeper level.Challenges and future research directions of perovskite-based flexible photodetectors are proposed in the end.The purpose of this review is not only to shed light on the basic design principle of flexible photodetectors,but also to serve as the roadmap for further developments of flexible photodetectors and exploring their applications in the fields of industrial manufacturing,human life,and health care.展开更多
Diverse defects in copper indium gallium diselenide solar cells cause nonradiative recombination losses and impair device performance.Here,an organic passivation scheme for surface and grain boundary defects is report...Diverse defects in copper indium gallium diselenide solar cells cause nonradiative recombination losses and impair device performance.Here,an organic passivation scheme for surface and grain boundary defects is reported,which employs an organic passivation agent to infiltrate the copper indium gallium diselenide thin films.A transparent conductive passivating(TCP)film is then developed by incorporating metal nanowires into the organic polymer and used in solar cells.The TCP films have a transmittance of more than 90%in the visible and nearinfrared spectra and a sheet resistance of~10.5Ω/sq.This leads to improvements in the open-circuit voltage and the efficiency of the organic passivated solar cells compared with control cells and paves the way for novel approaches to copper indium gallium diselenide defect passivation and possibly other compound solar cells.展开更多
基金supported in part by an Ontario Research Fund-Research Excellence(ORF-RE)grant(Ontario,Canada)in partnership with Patheon by Thermo Fisher Scientific,Natural Sciences and Engineering Research Council(NSERC)of Canada Discovery Grant and Equipment Grants to Xiao Yu Wu,University of Toronto(Canada),Leslie Dan Faculty of Pharmacy Dean's Fund to Jamie Anne Lugtu-Pe,University of Toronto(Canada),Mitacs Accelerate Internship sponsored by Candoo Pharmatech Company Inc.to Xuning Zhang(Canada),NSERC CREATE ContRoL program support to Sako Mirzaie and Hao Han R.Chang(Canada),Ontario Graduate Scholarship(OGS)to Hao Han R.Chang(Canada),and Pharmaceutical Sciences graduate department scholarships to Hao Han R.Chang and Kuan Chen,University of Toronto(Canada).
文摘Solid oral controlled release formulations feature numerous clinical advantages for drug candidates with adequate solubility and dissolution rate.However,most new chemical entities exhibit poor water solubility,and hence are exempt from such benefits.Although combining drug amorphization with controlled release formulation is promising to elevate drug solubility,like other supersaturating systems,the problem of drug recrystallization has yet to be resolved,particularly within the dosage form.Here,we explored the potential of an emerging,non-leachable terpolymer nanoparticle(TPN)pore former as an internal recrystallization inhibitor within controlled release amorphous solid dispersion(CRASD)beads comprising a poorly soluble drug(celecoxib)reservoir and insoluble polymer(ethylcellulose)membrane.Compared to conventional pore former,polyvinylpyrrolidone(PVP),TPN-containing membranes exhibited superior structural integrity,less crystal formation at the CRASD bead surface,and greater extent of celecoxib release.All-atom molecular dynamics analyses revealed that in the presence of TPN,intra-molecular bonding,crystal formation tendency,diffusion coefficient,and molecular flexibility of celecoxib were reduced,while intermolecular H-bonding was increased as compared to PVP.This work suggests that selection of a pore former that promotes prolonged molecular separation within a nanoporous controlled release membrane structure may serve as an effective strategy to enhance amorphicity preservation inside CRASD.
基金National Natural Science Foundation of China(52275562)National Key Research and Development Program of China(2019YFB1503200)。
文摘Scintillators are widely utilized in high-energy radiation detection in view of their high light yield and short fluorescence decay time.However,constrained by their current shortcomings,such as complex fabrication procedures,high temperature,and difficulty in the large scale,it is difficult to meet the increasing demand for costeffective,flexible,and environment-friendly X-ray detection using traditional scintillators.Perovskite-related cesium copper halide scintillators have recently received multitudinous research due to their tunable emission wavelength,high photoluminescence quantum yield(PLQY),and excellent optical properties.Herein,we demonstrated a facile solution-synthesis route for indium-doped all-inorganic cesium copper iodide(Cs_(3)Cu_(2)I_(5))powders and a high scintillation yield flexible film utilizing indium-doped Cs_(3)Cu_(2)I_(5)powders.The large area flexible films achieved a PLQY as high as 90.2%by appropriately adjusting the indium doping concentration,much higher than the undoped one(73.9%).Moreover,benefiting from low self-absorption and high PLQY,the Cs_(3)Cu_(2)I_(5):In films exhibited ultralow detection limit of 56.2 n Gy/s,high spatial resolution up to 11.3 lp/mm,and marvelous relative light output with strong stability,facilitating that Cs_(3)Cu_(2)I_(5):In films are excellent candidates for X-ray medical radiography.Our work provides an effective strategy for developing environment-friendly,low-cost,and efficient scintillator films,showing great potential in the application of highperformance X-ray imaging.
基金financially supported by the Central Guidance on Local Science and Technology Develop-ment Fund Project of Hebei Province(Grant No.226Z4306G)the Natural Science Foundation of Hebei Province(Grant No.F2023201005)+4 种基金the National Key Research and Development Program of China(Grant No.2017YFA0206600)the National Natural Science Foundation of China(Grant Nos.21922505,21773045)the CAS Instrument Develop-ment Project(Grant No.YJKYYQ20190010)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000)CAS-NST Joint Research Projects(Grant No.163GJHZ2023017MI).
文摘Organic solar cells(OSCs)have attracted attention due to their lightweight nature,flexibility,and facile preparation using solution-based methods.Their efficiency has been further elevated by the rapid advancement of nonfullerene materials,achieving individual cell efficiencies that surpass 19%.Hence,the stability of nonfullerene solar cell production must be scrutinized.The stability of the cathode interface layer significantly impacts the overall stability of OSC devices.PFN-Br,a commonly employed cathode interface material,is susceptible to degradation due to its sensitivity to environmental humidity,consequently compromising the device stability.In this study,we introduce fluorescent dye molecules,rhodamine 101,as cathode interface layers in OSCs to establish device stability and assess their universality.A comparative investigation of rhodamine 101 and PFN-Br devices demonstrates the former’s distinct advantages in terms of thermal stability,photostability,and storage stability even without encapsulation,particularly in an inert environment.By employing the Kelvin probe,we compare the work function of different cathode interface films and reveal that the work function of the rhodamine 101 interface material remains relatively unaffected by environmental factors.As a consequence,the device performance stability is significantly enhanced.The application of such fluorescent dye molecules extends the scope of cathode interface layers,amplifies device stability,and propels industrialization.
基金This work was supported by the National Natural Science Foundation of China(Nos.21875012,21674006).
文摘Dielectric constant(ε)is an important parameter affecting the power conversion efficiency of organic solar cells(OSC).Increasingεof bulk heterojunctions in general can benefit the performance of OSCs,as an increasedεwill reduce the influence of Coulomb interaction between weakly bound electron-hole pairs on charge-transfer states or bimolecular recombination involving mobile carriers to reduce geminate and nongeminate losses.In this review,we overview the current understandings on dielectric constant and its impacts on exciton dissociation and voltage losses in OSCs and summarize recent efforts attempting to modify the dielectric properties of OSC materials through synthetic approaches.We further discuss the commonly adopted techniques for determining the parameter ofεwith stressing the testing conditions that may affect the accuracy of results.At last,we suggest that novel experimental methods to improve the dielectric constant and resultant physical processes in OSCs will be appreciated,which helps enrich the existing strategy reservoir toward enhancement of photovoltaic efficiencies.
文摘An auxiliary power supply(Aux-PS)has become an essential component of electronic equipment for many industrial applications,such as in motor drives,photovoltaic(PV)inverters,uninterruptible power supply(UPS)systems and modular multilevel converters.The introduction of 1700 V silicon carbide(SiC)metal oxide semiconductor field effect transistors(MOSFETs)is useful for such applications,providing benefits with respect to a low on-state resistance,smaller package,low switching loss and single-switching implementation.A single end flyback Aux-PS is designed for industrial applications with a wide input voltage range using 1.7 kV SiC MOSFETs.The special design tradeoffs involved in the usage of SiC MOSFETs are discussed in detail,such as those with regard to gate driving voltage selection,isolation transformer design considerations,and clamping circuit design details.A 60 W demonstration hardware is developed and tested under different working conditions.The results verify the higher efficiency and better thermal performance of the proposed hardware relative to those of traditional Si solutions.
基金the National Natural Science Foundation of China(21875012,21674006,21773045)the National Key Research and Development Program of China(2017YFA0206600)+1 种基金the Chinese Academy of Science(100 Top Young Scientists Program)the program of“Academic Excellence Foundation of BUAA for Ph D Students”。
文摘In comparison to widely adopted bulk heterojunction(BHJ)structures for organic solar cells(OSC),exploiting the sequential deposition to form planar heterojunction(PHJ)structures enables to realize the favorable vertical phase separation to facilitate charge extraction and reduce charge recombination in OSCs.However,effective tunings on the power conversion efficiency(PCE)in PHJ-OSCs are still restrained by the currently available methods.Based on a polymeric donor PBDBT-2 F(PBDBT=Poly[[4,8-bis[5-(2-ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4 H,8 H-benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]-2,5-thiophenediyl])and a non-fullerene(NF)acceptor Y6,we proposed a strategy to improve the properties of photovoltaic performances in PHJ-based OSCs through dilute dispersions of the PBDBT-2 F donor into the acceptor-dominant phase with the sequential film deposition.With the control of donor dispersions,the charge transport balance in the PHJ-OSCs is improved,leading to the expedited photocarrier sweep-out with reduced bimolecular charge recombination.As a result,a PCE of 15.4%is achieved in the PHJ-OSCs.Importantly,the PHJ solar cells with donor dispersions exhibit better thermal stability than corresponding BHJ devices,which is related to the better film morphology robustness and less affected charge sweep-out during the thermal aging.
基金the National Key R&D Program of China(Grant No.2019YFB1503200)the National Natural Science Foundation of China(Grant Nos.51905203 and 52275562)the Fund from the Science,Technology,and Innovation Commission of Shenzhen Municipality,China(Grant No.JCYJ20190809100209531).
文摘Next-generation optoelectronics should possess lightweight and flexible characteristics,thus conforming to various types of surfaces or human skins for portable and wearable applications.Flexible photodetectors as fundamental devices have been receiving increasing attention owing to their potential applications in artificial intelligence,aerospace industry,and wise information technology of 120,among which perovskite is a promising candidate as the light-harvesting material for its outstanding optical and electrical properties,remarkable mechanical flexibility,low-cost and low-temperature processing methods.To date,most of the reports have demonstrated the fabrication methods of the perovskite materials,materials engineering,applications in solar cells,light-emitting diodes,lasers,and photodetectors,strategies for device performance enhancement,few can be seen with a focus on the processing strategies of perovskite-based flexible photodetectors,which we will give a comprehensive summary,herein.To begin with,a brief introduction to the fabrication methods of perovskite(solution and vapor-based methods),device configurations(photovoltaic,photoconductor,and phototransistor),and performance parameters of the perovskite-based photodetectors are first arranged.Emphatically,processing strategies for photodetectors are presented following,including flexible substrates(i.e.,polymer,carbon cloth,fiber,paper,etc.),soft electrodes(i.e.,metal-based conductive networks,carbon-based conductive materials,and two-dimensional(2D)conductive materials,etc.),conformal encapsulation(single-layer and multilayer stacked encapsulation),low-dimensional perovskites(0D,1D,and 2D nanostructures),and elaborate device structures.Typical applications of perovskite-based flexible photodetectors such as optical communication,image sensing,and health monitoring are further exhibited to learn the flexible photodetectors on a deeper level.Challenges and future research directions of perovskite-based flexible photodetectors are proposed in the end.The purpose of this review is not only to shed light on the basic design principle of flexible photodetectors,but also to serve as the roadmap for further developments of flexible photodetectors and exploring their applications in the fields of industrial manufacturing,human life,and health care.
基金We gratefully acknowledge support from the National Program on Key R&D of China(2018YFB1500201)Key Research and Development Program of Hebei Province(No.20314305D)+9 种基金National Natural Science Foundation of China(62274054)Hebei Province Science Foundation for Distinguished Young Scholars(F2021201035)Top Young Outstanding Innovative Talents Program of Hebei Province(BJ2021006)The Natural Science Foundation of Hebei Province(F2019204325 and F2022201002)"333 project"of Hebei Province(C20221014)the Cooperative Scientific Research Project of“Chunhui Program”of Ministry of Education(2018-7),the Central Guidance on Local Science and Technology Development Fund Project of Hebei Province(No.226Z4306G)Foreign Scientist Joint Research of Hebei province(2021-16)the German Research Foundation(DFG)(FL 834/2-1,FL 834/2-2,FL 834/5-1,and FL 834/7-1)Postgraduate Innovation Funding Project of Hebei University(HBU2021ss068)The High-Performance Computing Platform of Hebei University。
文摘Diverse defects in copper indium gallium diselenide solar cells cause nonradiative recombination losses and impair device performance.Here,an organic passivation scheme for surface and grain boundary defects is reported,which employs an organic passivation agent to infiltrate the copper indium gallium diselenide thin films.A transparent conductive passivating(TCP)film is then developed by incorporating metal nanowires into the organic polymer and used in solar cells.The TCP films have a transmittance of more than 90%in the visible and nearinfrared spectra and a sheet resistance of~10.5Ω/sq.This leads to improvements in the open-circuit voltage and the efficiency of the organic passivated solar cells compared with control cells and paves the way for novel approaches to copper indium gallium diselenide defect passivation and possibly other compound solar cells.