Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby ...Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.展开更多
Marine shale gas in South China is widely distributed and demonstrates an enriched resource. Compared with the North American commercial shale gas field, the shale formation in South China is featured by old age, mult...Marine shale gas in South China is widely distributed and demonstrates an enriched resource. Compared with the North American commercial shale gas field, the shale formation in South China is featured by old age, multiple stages tectonic movements, and high thermal evolution degree and complex reservoir forming conditions. As a result, the existing theories and technical methods of exploration in North America cannot be simply applied to South China. Since 2007, based on the in-depth study on a large quantity of analytical test data, we have conducted the theory and technology research for the southern marine shale gas, found Wufeng-Longmaxi Group deep water shelf high-quality shale gas critical parameters coupling laws, proposed the “Binary Enrichment” theory for highly evolved marine shale gas in southern complex tectonic zone, and established a zone selection and evaluation criteria, which are based on the quality of shale, for the key of preservation condition, and for the purpose of economy. Taking this as a guide, we selected Longmaxi formation Lower Silurian of Fuling area in southeastern Sichuan Province as the preferred breakthrough field for the shale gas exploration. The Jiaoye 1 well has the daily gas production of 20.3 × 10<sup>4</sup> m<sup>3</sup>, which embarked the found of China’s first large-scale business development gas field, the Fuling shale gas field. And we submit the first domestic shale gas proven reserves of 1067.5 × 10<sup>8</sup> m<sup>3</sup>. The Fuling shale gas reservoirs are deep water shelf marine high-quality shale, with favorable thickness and even distribution, without dissection in the middle. They are typical self-generation and self-storage shale gas reservoirs. The gas fields have high production gas well;high pressure gas reservoir, good gas components and good exploit results, and there for the Fuling shale gas field is characterized by mid-depth, high pressure, high reservoir pressure, and high quality gas accumulation. Up to March 24, 2014, all of the 101 fracture-gas testing wells have obtained middle and upper shale airflow, with the average single well test production of 32.6 × 10<sup>4</sup> m<sup>3</sup>/d. In the exploration and development process, technology series in geological evaluation, horizontal well, drilling, well completion, piecewise fracturing techniques have been gradually formed. It is of great importance to commercially develop the domestic shale gas and promote the restructuring of China’s energy structure.展开更多
Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, Chin...Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields.展开更多
Background:Bacillus amyloliquefaciens(BA)and Bacillus subtilis(BS)are usually used as feed supplements directly or bacterial inoculants in biological feeds for animals.However,few research have reported the effects of...Background:Bacillus amyloliquefaciens(BA)and Bacillus subtilis(BS)are usually used as feed supplements directly or bacterial inoculants in biological feeds for animals.However,few research have reported the effects of BA and BS on fermentation characteristics and bacterial community successions of whole-plant corn silage during ensiling.If the BA and BS inoculants have positive effects on silages,then they could not only improve fermentation characteristics,but also deliver BA or BS viable cells to ruminants,which would play its probiotic effect.Therefore,the objectives of this study were to investigate the effects of BA and BS on the fermentation,chemical characteristics,bacterial community and their metabolic pathway of whole-plant corn silage.Results:Freshly chopped whole-plant corn was inoculated without or with BA and BS,respectively,and ensiled for1,3,7,14 and 60 d.Results showed that BA and BS inoculations increased lactic acid concentrations of whole-plant corn silages compared with control,and BA inoculation decreased acetic acid concentrations,whereas BS inoculation decreased fiber contents and increased crude protein(CP)content.Higher water-soluble carbohydrate contents and lower starch contents were observed in BA-and BS-inoculated silages compared with that in control.The decreased CP content and increased non-protein nitrogen content were observed in BA-inoculated silage,which was consistent with the higher amino acid metabolism abundances observed in BA-inoculated silage.In addition,it was noteworthy that BA and BS inoculations increased the metabolism of cofactors and vitamins,and decreased the relative abundances of drug resistance:antimicrobial pathways.We also found that the bacterial metabolism pathways were clearly separated into three clusters based on the ensiling times of whole-plant corn silage in the present study.There were no significant differences in bacterial community compositions among the three groups during ensiling.However,BA and BS inoculations decreased the relative abundances of undesirable bacteria such as Acetobacter and Acinetobacter.Conclusion:Our findings suggested that the BS strain was more suitable as silage inoculants than the BA strain in whole-plant corn silage in this study.展开更多
Background Ferulic acid esterase(FAE)-secreting Lactiplantibacillus plantarum A1(Lp A1)is a promising silage inoculant due to the FAE’s ability to alter the plant cell wall structure during ensiling,an action that is...Background Ferulic acid esterase(FAE)-secreting Lactiplantibacillus plantarum A1(Lp A1)is a promising silage inoculant due to the FAE’s ability to alter the plant cell wall structure during ensiling,an action that is expected to improve forage digestibility.However,little is known regarding the impacts of Lp A1 on rumen microbiota.Our research assessed the influences of Lp A1 in comparison to a widely adopted commercial inoculant Lp MTD/1 on alfalfa’s ensilage,in vitro rumen incubation and microbiota.Results Samples of fresh and ensiled alfalfa treated with(either Lp A1 or Lp MTD/1)or without additives(as control;CON)and ensiled for 30,60 and 90 d were used for fermentation quality,in vitro digestibility and batch culture study.Inoculants treated silage had lower(P<0.001)pH,acetic acid concentration and dry matter(DM)loss,but higher(P=0.001)lactic acid concentration than the CON during ensiling.Compared to the CON and Lp MTD/1,silage treated with Lp A1 had lower(P<0.001)aNDF,ADF,ADL,hemicellulose,and cellulose contents and higher(P<0.001)free ferulic acid concentration.Compared silage treated with Lp MTD/1,silage treated with Lp A1 had significantly(P<0.01)improved ruminal gas production and digestibility,which were equivalent to those of fresh alfalfa.Realtime PCR analysis indicated that Lp A1 inoculation improved the relative abundances of rumen’s total bacteria,fungi,Ruminococcus albus and Ruminococcus flavefaciens,while the relative abundance of methanogens was reduced by Lp MTD/1 compared with CON.Principal component analysis of rumen bacterial 16S rRNA gene amplicons showed a clear distinction between CON and inoculated treatments without noticeable distinction between Lp A1 and Lp MTD/1 treatments.Comparison analysis revealed differences in the relative abundance of some bacteria in different taxa between Lp A1 and Lp MTD/1 treatments.Silage treated with Lp A1 exhibited improved rumen fermentation characteristics due to the inoculant effects on the rumen microbial populations and bacterial community.Conclusions Our findings suggest that silage inoculation of the FAE-producing Lp A1 could be effective in improving silage quality and digestibility,and modulating the rumen fermentation to improve feed utilization.展开更多
The authors’regret to state that the experimental strain used in the above-mentioned article was published with a wrong name.Instead of Lactobacillus plantarum A1,all the name of the strain should be changed to Lacto...The authors’regret to state that the experimental strain used in the above-mentioned article was published with a wrong name.Instead of Lactobacillus plantarum A1,all the name of the strain should be changed to Lactobacillus reuteri A4-2.The authors would like to apologize for any inconvenience caused.展开更多
Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power i...Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis.展开更多
A feeding experiment was conducted to determine the effects of inoculating alfalfa silage with a ferulic acid esterase-producing inoculum on feed digestibility,rumen fermentation,antioxidant,and immunity status of lac...A feeding experiment was conducted to determine the effects of inoculating alfalfa silage with a ferulic acid esterase-producing inoculum on feed digestibility,rumen fermentation,antioxidant,and immunity status of lactating dairy goats.Twenty dairy goats were distributed into 2 experimental groups consisting of control diet(Lp MTD/1,including Lactobacillus plantarum MTD/1 inoculated silage)against diet containing silage treated with ferulic acid esterase-producing L.plantarum A1(Lp A1).Alfalfa silage inoculated with a ferulic acid esterase-producing Lp A1 had better fermentation quality than the Lp MTD/1inoculation.The application of Lp A1 improved silage antioxidant capacity as indicated by greater total antioxidant capacity(T-AOC),superoxide dismutase(SOD)and glutathion peroxidase(GSH-Px)activities in Lp A1 treated silage versus Lp MTD/1 treatment.Compared with Lp MTD/1 treated group,inoculation of silage with Lp A1 increased apparent total tract digestibility of dietary dry matter,organic matter and crude protein,and ruminal concentrations of total volatile fatty acids,acetate,propionate and isobutyrate as well.The results of current study also demonstrated improved antioxidant capacity and immune performance of dairy goats with Lp A1 inoculation.Feeding Lp A1-treated silage increased dairy goats’serum antioxidase activity,such as T-AOC,SOD,GSH-Px and catalase,and the serum concentration of immunoglobulin A,while decreased tumor necrosis factor a,interleukin(IL)-2 and IL-6.In addition,compared with Lp MTD/1,diet containing alfalfa silage inoculated with Lp A1 endowed dairy goats’milk with greater fat and protein contents,improved dairy goat milk quality without affecting feed efficiency.展开更多
Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are appli...Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are applied but these have many side effects.Instead of these,scientists have discovered beneficial rhizobacteria,which are environmentally friendly and may increase crop yield and plant growth.The microbial population of the rhizosphere shows a pivotal role in plant development by inducing its physiology.Plant depends upon the valuable interactions among the roots and microbes for the growth,nutrients availability,growth promotion,disease suppression and other important roles for plants.Recently numerous secrets of microbes in the rhizosphere have been revealed due to huge development in molecular and microscopic technologies.This review illustrated and discussed the current knowledge on the development,maintenance,interactions of rhizobacterial populations and various proposed mechanisms normally used by PGPR in the rhizosphere that encouraging the plant growth and alleviating the stress conditions.In addition,this research reviewed the role of single and combination of PGPR,mycorrhizal fungi in plant development and modulation of the stress as well as factors affecting the microbiome in the rhizosphere.展开更多
A series of breakthroughs have been made in the understanding, evaluation, and exploration of shale gas from discovery, environmental protection to efficient exploration in the discovering of Fuling Gas Field. By reve...A series of breakthroughs have been made in the understanding, evaluation, and exploration of shale gas from discovery, environmental protection to efficient exploration in the discovering of Fuling Gas Field. By revealing the positive correlation between organic carbon content and siliceous mineral content of shale deposited in deep shelf, dynamic preservation mechanism of “early retention and late deformation,”it is clarified that the shales deposited in deep shelf are the most favorable for shale gas generation, storage and fracturing. The preser-ving conditions determine the levels of shale gas accumulation, thus the evaluation concept of taking the quality of the shale as the base and the preserving conditions as key is proposed, the evaluation system for strategic selection of favorable zones is established for marine shale gas exploration in Southern China. Moreover, the “sweet point” seismic forecasting technologies for marine shale gas, the “six properties” logging technologies for evaluating shale gas layers, the technologies for quick and efficient drilling of horizontal well groups, and the fracturing technologies for composite fractures for hor-izontal wells are invented. The paper discussed the exploration prospect of shale gas in the shales of Wufeng-Longmaxi Formation in great depth in Sichuan Basin, shale gas exploration in the outer region of the south, and continental shale gas exploration in China.展开更多
基金supported by the National Natural Science Foundation of China (No. U20A2002)China Postdoctoral Science Foundation (No. 2023T160284)recipient of a research productivity fellowship from CNPq (National Council of Scientific and Technological Development) in Brazil
文摘Background Milk synthesis in lactating animals demands high energy metabolism,which results in an increased production of reactive oxygen metabolites(ROM)causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress(OS)on the animals.To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation,a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum.Methods Twenty-four Guanzhong dairy goats(38.1±1.20 kg)were randomly assigned to two dietary treatments:one containing silage inoculated with L.plantarum MTD/1(RSMTD-1),and the other containing silage inoculated with high antioxidant activity L.plantarum 24-7(ES24-7).Results ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1.The ES24-7 diet elevated the total antioxidant capacity(T-AOC),superoxide dismutase(SOD),glutathione peroxi-dase(GSH-Px),and catalase(CAT)activities in milk,serum,and feces of lactating goats(with the exception of T-AOC in milk).Additionally,the diet containing ES24-7 inoculated silage enhanced casein yield,milk free fatty acid(FFA)content,and vitamin A level in the goats’milk.Furthermore,an increase of immunoglobulin(Ig)A,IgG,IgM,inter-leukin(IL)-4,and IL-10 concentrations were observed,coupled with a reduction in IL-1β,IL-2,IL-6,interferon(IFN)-γ,and tumor necrosis factor(TNF)-αconcentrations in the serum of lactating goats fed ES24-7.Higher concentrations of total volatile fatty acid(VFA),acetate,and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage.Moreover,the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2(NFE2L2),beta-carotene oxygenase 1(BCO1),SOD1,SOD2,SOD3,GPX2,CAT,glu-tathione-disulfide reductase(GSR),and heme oxygenase 1(HMOX1)genes in the mammary gland,while decreased the levels of NADPH oxidase 4(NOX4),TNF,and interferon gamma(IFNG).Conclusions These findings indicated that feeding L.plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.
文摘Marine shale gas in South China is widely distributed and demonstrates an enriched resource. Compared with the North American commercial shale gas field, the shale formation in South China is featured by old age, multiple stages tectonic movements, and high thermal evolution degree and complex reservoir forming conditions. As a result, the existing theories and technical methods of exploration in North America cannot be simply applied to South China. Since 2007, based on the in-depth study on a large quantity of analytical test data, we have conducted the theory and technology research for the southern marine shale gas, found Wufeng-Longmaxi Group deep water shelf high-quality shale gas critical parameters coupling laws, proposed the “Binary Enrichment” theory for highly evolved marine shale gas in southern complex tectonic zone, and established a zone selection and evaluation criteria, which are based on the quality of shale, for the key of preservation condition, and for the purpose of economy. Taking this as a guide, we selected Longmaxi formation Lower Silurian of Fuling area in southeastern Sichuan Province as the preferred breakthrough field for the shale gas exploration. The Jiaoye 1 well has the daily gas production of 20.3 × 10<sup>4</sup> m<sup>3</sup>, which embarked the found of China’s first large-scale business development gas field, the Fuling shale gas field. And we submit the first domestic shale gas proven reserves of 1067.5 × 10<sup>8</sup> m<sup>3</sup>. The Fuling shale gas reservoirs are deep water shelf marine high-quality shale, with favorable thickness and even distribution, without dissection in the middle. They are typical self-generation and self-storage shale gas reservoirs. The gas fields have high production gas well;high pressure gas reservoir, good gas components and good exploit results, and there for the Fuling shale gas field is characterized by mid-depth, high pressure, high reservoir pressure, and high quality gas accumulation. Up to March 24, 2014, all of the 101 fracture-gas testing wells have obtained middle and upper shale airflow, with the average single well test production of 32.6 × 10<sup>4</sup> m<sup>3</sup>/d. In the exploration and development process, technology series in geological evaluation, horizontal well, drilling, well completion, piecewise fracturing techniques have been gradually formed. It is of great importance to commercially develop the domestic shale gas and promote the restructuring of China’s energy structure.
基金the National Science and Technology Major Project (2017ZX05005)the National Natural Science Foundations of China (41672123).
文摘Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields.
基金funded by National Natural Science Foundation of China(project no.31872417)。
文摘Background:Bacillus amyloliquefaciens(BA)and Bacillus subtilis(BS)are usually used as feed supplements directly or bacterial inoculants in biological feeds for animals.However,few research have reported the effects of BA and BS on fermentation characteristics and bacterial community successions of whole-plant corn silage during ensiling.If the BA and BS inoculants have positive effects on silages,then they could not only improve fermentation characteristics,but also deliver BA or BS viable cells to ruminants,which would play its probiotic effect.Therefore,the objectives of this study were to investigate the effects of BA and BS on the fermentation,chemical characteristics,bacterial community and their metabolic pathway of whole-plant corn silage.Results:Freshly chopped whole-plant corn was inoculated without or with BA and BS,respectively,and ensiled for1,3,7,14 and 60 d.Results showed that BA and BS inoculations increased lactic acid concentrations of whole-plant corn silages compared with control,and BA inoculation decreased acetic acid concentrations,whereas BS inoculation decreased fiber contents and increased crude protein(CP)content.Higher water-soluble carbohydrate contents and lower starch contents were observed in BA-and BS-inoculated silages compared with that in control.The decreased CP content and increased non-protein nitrogen content were observed in BA-inoculated silage,which was consistent with the higher amino acid metabolism abundances observed in BA-inoculated silage.In addition,it was noteworthy that BA and BS inoculations increased the metabolism of cofactors and vitamins,and decreased the relative abundances of drug resistance:antimicrobial pathways.We also found that the bacterial metabolism pathways were clearly separated into three clusters based on the ensiling times of whole-plant corn silage in the present study.There were no significant differences in bacterial community compositions among the three groups during ensiling.However,BA and BS inoculations decreased the relative abundances of undesirable bacteria such as Acetobacter and Acinetobacter.Conclusion:Our findings suggested that the BS strain was more suitable as silage inoculants than the BA strain in whole-plant corn silage in this study.
基金funded by National Natural Science Foundation of China(project no.31901390)China Postdoctoral Science Foundation(project no.2022M711451)Natural Science Foundation of Gansu Province,China(22JR5RA527)。
文摘Background Ferulic acid esterase(FAE)-secreting Lactiplantibacillus plantarum A1(Lp A1)is a promising silage inoculant due to the FAE’s ability to alter the plant cell wall structure during ensiling,an action that is expected to improve forage digestibility.However,little is known regarding the impacts of Lp A1 on rumen microbiota.Our research assessed the influences of Lp A1 in comparison to a widely adopted commercial inoculant Lp MTD/1 on alfalfa’s ensilage,in vitro rumen incubation and microbiota.Results Samples of fresh and ensiled alfalfa treated with(either Lp A1 or Lp MTD/1)or without additives(as control;CON)and ensiled for 30,60 and 90 d were used for fermentation quality,in vitro digestibility and batch culture study.Inoculants treated silage had lower(P<0.001)pH,acetic acid concentration and dry matter(DM)loss,but higher(P=0.001)lactic acid concentration than the CON during ensiling.Compared to the CON and Lp MTD/1,silage treated with Lp A1 had lower(P<0.001)aNDF,ADF,ADL,hemicellulose,and cellulose contents and higher(P<0.001)free ferulic acid concentration.Compared silage treated with Lp MTD/1,silage treated with Lp A1 had significantly(P<0.01)improved ruminal gas production and digestibility,which were equivalent to those of fresh alfalfa.Realtime PCR analysis indicated that Lp A1 inoculation improved the relative abundances of rumen’s total bacteria,fungi,Ruminococcus albus and Ruminococcus flavefaciens,while the relative abundance of methanogens was reduced by Lp MTD/1 compared with CON.Principal component analysis of rumen bacterial 16S rRNA gene amplicons showed a clear distinction between CON and inoculated treatments without noticeable distinction between Lp A1 and Lp MTD/1 treatments.Comparison analysis revealed differences in the relative abundance of some bacteria in different taxa between Lp A1 and Lp MTD/1 treatments.Silage treated with Lp A1 exhibited improved rumen fermentation characteristics due to the inoculant effects on the rumen microbial populations and bacterial community.Conclusions Our findings suggest that silage inoculation of the FAE-producing Lp A1 could be effective in improving silage quality and digestibility,and modulating the rumen fermentation to improve feed utilization.
文摘The authors’regret to state that the experimental strain used in the above-mentioned article was published with a wrong name.Instead of Lactobacillus plantarum A1,all the name of the strain should be changed to Lactobacillus reuteri A4-2.The authors would like to apologize for any inconvenience caused.
基金supported in part by the National Natural Science Foundation of China (No. 51977087)in part by the Science and Technology Project of State Grid Corporation of China (No. 1400-202199550A-0-5-ZN)。
文摘Accelerating the development of renewable energy and reducing CO_(2)emissions have become a general consensus and concerted action of all countries in the world. The electric power industry, especially thermal power industry, is the main source for fossil energy consumption and CO_(2)emissions. Since solvent-based post-combustion carbon capture technology would bring massive extra energy consumption, the application of solar-assisted carbon capture technology has attracted extensive attention. Due to the important role of coal-fired combined heat and power plants for serving residential and industrial heating districts, in this paper, the low-carbon operation benefits of combined heat and power integrated plants based on solar-assisted carbon capture(CHPIP-SACC) are fully evaluated in heat and power integrated energy system with a high proportion of wind power. Based on the selected integration scheme, a linear operation model of CHPIP-SACC is developed considering energy flow characteristics and thermal coupling interaction of its internal modules. From the perspective of system-level operation optimization, the day-ahead economic dispatch problem based on a mix-integer linear programming model is presented to evaluate the low-carbon benefits of CHPIP-SACC during annual operation simulation. The numerical simulations on a modified IEEE 39-bus system demonstrate the effectiveness of CHPIP-SACC for reducing CO_(2)emissions as well as increasing the downward flexibility. The impact of different solar field areas and unit prices of coal on the low-carbon operation benefits of CHPIP-SACC is studied in the section of sensitivity analysis.
基金financial support provided by the National Natural Science Foundation of China(31901390)the National Key R&D Program of China(2017YFE0104300)。
文摘A feeding experiment was conducted to determine the effects of inoculating alfalfa silage with a ferulic acid esterase-producing inoculum on feed digestibility,rumen fermentation,antioxidant,and immunity status of lactating dairy goats.Twenty dairy goats were distributed into 2 experimental groups consisting of control diet(Lp MTD/1,including Lactobacillus plantarum MTD/1 inoculated silage)against diet containing silage treated with ferulic acid esterase-producing L.plantarum A1(Lp A1).Alfalfa silage inoculated with a ferulic acid esterase-producing Lp A1 had better fermentation quality than the Lp MTD/1inoculation.The application of Lp A1 improved silage antioxidant capacity as indicated by greater total antioxidant capacity(T-AOC),superoxide dismutase(SOD)and glutathion peroxidase(GSH-Px)activities in Lp A1 treated silage versus Lp MTD/1 treatment.Compared with Lp MTD/1 treated group,inoculation of silage with Lp A1 increased apparent total tract digestibility of dietary dry matter,organic matter and crude protein,and ruminal concentrations of total volatile fatty acids,acetate,propionate and isobutyrate as well.The results of current study also demonstrated improved antioxidant capacity and immune performance of dairy goats with Lp A1 inoculation.Feeding Lp A1-treated silage increased dairy goats’serum antioxidase activity,such as T-AOC,SOD,GSH-Px and catalase,and the serum concentration of immunoglobulin A,while decreased tumor necrosis factor a,interleukin(IL)-2 and IL-6.In addition,compared with Lp MTD/1,diet containing alfalfa silage inoculated with Lp A1 endowed dairy goats’milk with greater fat and protein contents,improved dairy goat milk quality without affecting feed efficiency.
基金The authors acknowledge that this work was financially supported by the Fundamental Research Fund for the Central Universities of China(Project No.lzujbky-2017-k15).
文摘Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are applied but these have many side effects.Instead of these,scientists have discovered beneficial rhizobacteria,which are environmentally friendly and may increase crop yield and plant growth.The microbial population of the rhizosphere shows a pivotal role in plant development by inducing its physiology.Plant depends upon the valuable interactions among the roots and microbes for the growth,nutrients availability,growth promotion,disease suppression and other important roles for plants.Recently numerous secrets of microbes in the rhizosphere have been revealed due to huge development in molecular and microscopic technologies.This review illustrated and discussed the current knowledge on the development,maintenance,interactions of rhizobacterial populations and various proposed mechanisms normally used by PGPR in the rhizosphere that encouraging the plant growth and alleviating the stress conditions.In addition,this research reviewed the role of single and combination of PGPR,mycorrhizal fungi in plant development and modulation of the stress as well as factors affecting the microbiome in the rhizosphere.
文摘A series of breakthroughs have been made in the understanding, evaluation, and exploration of shale gas from discovery, environmental protection to efficient exploration in the discovering of Fuling Gas Field. By revealing the positive correlation between organic carbon content and siliceous mineral content of shale deposited in deep shelf, dynamic preservation mechanism of “early retention and late deformation,”it is clarified that the shales deposited in deep shelf are the most favorable for shale gas generation, storage and fracturing. The preser-ving conditions determine the levels of shale gas accumulation, thus the evaluation concept of taking the quality of the shale as the base and the preserving conditions as key is proposed, the evaluation system for strategic selection of favorable zones is established for marine shale gas exploration in Southern China. Moreover, the “sweet point” seismic forecasting technologies for marine shale gas, the “six properties” logging technologies for evaluating shale gas layers, the technologies for quick and efficient drilling of horizontal well groups, and the fracturing technologies for composite fractures for hor-izontal wells are invented. The paper discussed the exploration prospect of shale gas in the shales of Wufeng-Longmaxi Formation in great depth in Sichuan Basin, shale gas exploration in the outer region of the south, and continental shale gas exploration in China.