We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the ...We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ...The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.展开更多
Background Each GECAM satellite payload contains 25 gamma-ray detectors(GRDs),which can detect gamma-rays and particles and can roughly localize the Gamma-Ray Bursts(GRBs).GRD was designed using lanthanum bromide(LaBr...Background Each GECAM satellite payload contains 25 gamma-ray detectors(GRDs),which can detect gamma-rays and particles and can roughly localize the Gamma-Ray Bursts(GRBs).GRD was designed using lanthanum bromide(LaBr3)crystal as the sensitive material with the rear end coupled with silicon photomultiplier(SiPM)array for readout.Purpose In aerospace engineering design of GRD,there are many key points to be studied.In this paper,we present the specific design scheme of GRD,the assembly and the performance test results of detectors.Methods Based on Monte Carlo simulation and experimental test results,the specific schematic design and assembling process of GRD were optimized.After being fully assembled,the GRDs were conducted performance tests by using radioactive source and also conducted random vibration tests.Result and conclusion The test results show that all satellite-borne GRDs have energy resolution<16%at 59.5 keV,meeting requirements of satellite in scientific performance.The random vibration test shows that GRD can maintain in a stable performance,which meets the requirement of spatial application.展开更多
A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by inv...A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by involving different types of objects,adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth.The calculated results under different conditions are in good agreement with experiments much well.The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions(energies and fluences)and material conditions(system temperature and existent sinks),by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks(dislocation lines and grain boundaries).The model,coded as IRadMat,would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.展开更多
Introduction The main physical objective of the GECAM satellite is to detect gamma-ray bursts,which is related to gravitational waves of double compact object mergers.The GECAM satellite also detects and investigates ...Introduction The main physical objective of the GECAM satellite is to detect gamma-ray bursts,which is related to gravitational waves of double compact object mergers.The GECAM satellite also detects and investigates various bursts of high-energy celestial bodies.Purposes and methods In this study,we designed,developed and calibrated the payload and launched it into orbit with GECAM satellite.The payload consists of the gamma ray detector(GRD,for detecting 4 keV–4 MeV X/γray),the charged particle detector(CPD,for detecting 150 keV–5 MeV charged particle),and the electronic box(EBOX).The all-sky field coverage is achieved via two 229-degree large-area satellites positioned 180 degrees apart and are on opposite sides of the geo-center.Each satellite is equipped with 25 GRDs and 8 CPDs;thus,the satellite can identify charged particle bursts in space.Gamma-ray detectors adopt lanthanum bromide crystal technology combined with silicon photomultipliers.This is the first time that this technology was used massively in space detectors.Conclusions The GECAM satellite can quickly determine the direction of gamma-ray bursts(positioning)via indexing and fitting method,while the transmit variability,energy spectrum and direction of the gamma-ray bursts guide subsequent observations through the Beidou-3 RDSS in quasi-real time.It will play an important role in the study of high energy celestial bursts.展开更多
Background The Gravitational wave highly energetic Electromagnetic Counterpart All-sky Monitor(GECAM)is dedicated to detecting gravitational wave gamma-ray bursts.It is capable of all-sky monitoring over and discoveri...Background The Gravitational wave highly energetic Electromagnetic Counterpart All-sky Monitor(GECAM)is dedicated to detecting gravitational wave gamma-ray bursts.It is capable of all-sky monitoring over and discovering gamma-ray bursts and new radiation phenomena.GECAM consists of two microsatellites,each equipped with 8 charged particle detectors(CPDs)and 25 gamma-ray detectors(GRDs).Purpose The CPD is used to measure charged particles in the space environment,monitor energy and flow intensity changes,and identify between gamma-ray bursts and space charged particle events in conjunction with GRD.Methods CPD uses plastic scintillator as the sensitive material for detection,silicon photomultiplier array as the optically readable device,and the inlaid Am-241 radioactive source as the onboard calibration means.Conclusion In this paper,we will present the working principle,physical design,functional implementation and preliminary performance test results of the CPD.As a result,the energy range of electron,gamma-ray detection efficiency and dead time are tested to be better than the indexes required through the ground calibration experiment.展开更多
Background The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor(GECAM)consists of 2 microsatellites,each of which contains 25 GRD(LaBr3)detectors and 8 CPD(plastic scintillator)detectors.Meth...Background The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor(GECAM)consists of 2 microsatellites,each of which contains 25 GRD(LaBr3)detectors and 8 CPD(plastic scintillator)detectors.Method silicon photomultiplier(SiPM)array is used to read each detector.The output signal of these detectors with SiPM array is very special and challenging to readout.In this study,a novel data acquisition(DAQ)algorithm for these detectors is designed and implemented,and the content of the output event packet is defined.Result and Conclusion The performances,including the event acquisition efficiency of this DAQ algorithm,are extensively verified through experimental tests.From the on-ground and in-flight tests,this algorithm has excellent performance despite the very limited resources and short development time of GECAM mission.展开更多
Purpose The discovery of gravitational waves and gamma-ray bursts heralds the era of multi-messenger astronomy.With the adoption of two small satellites to achieve the all-sky monitoring of gamma-ray bursts,the gravit...Purpose The discovery of gravitational waves and gamma-ray bursts heralds the era of multi-messenger astronomy.With the adoption of two small satellites to achieve the all-sky monitoring of gamma-ray bursts,the gravitational wave highenergy electromagnetic counterpart all-sky monitor(GECAM)possesses a quasi-real-time early warning ability and plays an important role in positioning the sources of gravitational waves and in subsequent observations.Each satellite of GECAM was fitted with 253-inch-diameter gamma-ray detectors(GRD),covering an energy range of 8–2 MeV.GRDs have adopted silicon photomultiplier tubes(SiPM)in lieu of photomultiplier tubes(PMT)to adapt to the dimensional limitations of micro-satellites.Methods A unique 3-inch circular SiPM array was designed.In this design,646×6 mm chips were arranged evenly in a circular manner with the seams filled with reflecting films,thus achieving satisfactory uniformity of light collection.The integrated pre-amplifier circuit on the back of the SiPM array adopted two-level grouping and summing;further,it achieved a satisfactory signal-to-noise ratio.Two high-gain and low-gain channels were adopted to achieve a large dynamic range,and two independent power supply units were used,where each unit can be closed separately,thus improving reliability.Results Performance studies show that this SiPM array meets the requirements of GECAM.Conclusion A 3-inch SiPM array have been developed that uses grouped summation,reflective films,a circular arrangement,two groups of independent power supplies,high-and low-gain signals,differential signal output technologies,etc.This solution can be used not only for GECAM,but also as a general solution for SiPM-based scintillation detectors.展开更多
We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected ...We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.展开更多
Background The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)satellite developed a SiPM-based gamma-ray detector to monitor the gravitational wave-related GRBs and guide subsequent o...Background The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)satellite developed a SiPM-based gamma-ray detector to monitor the gravitational wave-related GRBs and guide subsequent observations in other wavelengths of EM.Purpose As all the available SiPM devices belong to commercial grade,quality assurance tests need to be performed in accordance with the aerospace specifcations.Methods In the SiPM application of GECAM,quality assurance experiments were conducted.The mechanism of the failure of SiPM devices was analyzed during the development process.Result Based on the quality assurance test results,the fnal pass rate of SiPM array was 95%.Based on the failure analysis,it was found that a piece of SiPM had a leakage channel after longtime operation due to device defects.Conclusion According to the accumulated experience,in the reliability test of SiPM,it is necessary to pay special attention to test the impedance of each pin of SiPM to ground and confrm that the power switch state of SiPM is controllable.展开更多
Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first obser...Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).展开更多
基金Supported in part by the National Key R&D Program of China(2020YFA0406400,2020YFA0406300,2023YFA1606000)the National Natural Science Foundation of China(123B2077,12035009,11635010,11735014,11875054,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+8 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,the CAS Center for Excellence in Particle Physics(CCEPP),the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG(455635585,FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of Mongolia,National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907),the Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key R&D Program of China under Contracts Nos.2020YFA0406300,2020YFA0406400National Natural Science Foundation of China(NSFC)under Contracts Nos.12150004,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017+17 种基金the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos.20210508047RQ and 20230101021JCthe Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No.U1832207CAS Key Research Program of Frontier Sciences under Contracts Nos.QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.894790German Research Foundation DFG under Contracts Nos.455635585,Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand under Contract No.B16F640076Polish National Science Centre under Contract No.2019/35/O/ST2/02907The Swedish Research CouncilU.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.
基金This research was supported by the National Natural Science Foundation of China,Grant No.11775251the strategic leading science and technology program of Chinese Academy of Sciences(Grant No.XDA 15360100,XDA 15360102).
文摘Background Each GECAM satellite payload contains 25 gamma-ray detectors(GRDs),which can detect gamma-rays and particles and can roughly localize the Gamma-Ray Bursts(GRBs).GRD was designed using lanthanum bromide(LaBr3)crystal as the sensitive material with the rear end coupled with silicon photomultiplier(SiPM)array for readout.Purpose In aerospace engineering design of GRD,there are many key points to be studied.In this paper,we present the specific design scheme of GRD,the assembly and the performance test results of detectors.Methods Based on Monte Carlo simulation and experimental test results,the specific schematic design and assembling process of GRD were optimized.After being fully assembled,the GRDs were conducted performance tests by using radioactive source and also conducted random vibration tests.Result and conclusion The test results show that all satellite-borne GRDs have energy resolution<16%at 59.5 keV,meeting requirements of satellite in scientific performance.The random vibration test shows that GRD can maintain in a stable performance,which meets the requirement of spatial application.
基金The authors are very grateful to Dr.Y.Dai of Spallation Materials Technology Spallation Neutron Source Division,Paul Scherrer Institute for his helpful comments and discussions.This work was supported by special Funds for Major State Basic Research Project of China(973)under Grant nos.2007CB925004 and 2008CB717802Knowledge Innovation Program of Chinese Academy of Sciences under Grant no.KJCX2-YW-N35+1 种基金National Science Foundation of China under Grant no.11005124China Postdoctoral Science Foundation funded project under Grant no.20100470863,and Director Grants of CASHIPS.Part of the calculations were performed in Center for Computational Science of CASHIPS.
文摘A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by involving different types of objects,adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth.The calculated results under different conditions are in good agreement with experiments much well.The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions(energies and fluences)and material conditions(system temperature and existent sinks),by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks(dislocation lines and grain boundaries).The model,coded as IRadMat,would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.
基金This project is supported by National Natural Science Foundation of China(12173038)the strategic leading science and technology program(XDA 15360100,XDA 15360102)of the Chinese Academy of Sciences.
文摘Introduction The main physical objective of the GECAM satellite is to detect gamma-ray bursts,which is related to gravitational waves of double compact object mergers.The GECAM satellite also detects and investigates various bursts of high-energy celestial bodies.Purposes and methods In this study,we designed,developed and calibrated the payload and launched it into orbit with GECAM satellite.The payload consists of the gamma ray detector(GRD,for detecting 4 keV–4 MeV X/γray),the charged particle detector(CPD,for detecting 150 keV–5 MeV charged particle),and the electronic box(EBOX).The all-sky field coverage is achieved via two 229-degree large-area satellites positioned 180 degrees apart and are on opposite sides of the geo-center.Each satellite is equipped with 25 GRDs and 8 CPDs;thus,the satellite can identify charged particle bursts in space.Gamma-ray detectors adopt lanthanum bromide crystal technology combined with silicon photomultipliers.This is the first time that this technology was used massively in space detectors.Conclusions The GECAM satellite can quickly determine the direction of gamma-ray bursts(positioning)via indexing and fitting method,while the transmit variability,energy spectrum and direction of the gamma-ray bursts guide subsequent observations through the Beidou-3 RDSS in quasi-real time.It will play an important role in the study of high energy celestial bursts.
基金This research was supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences,Grant No.XDA 15360102.
文摘Background The Gravitational wave highly energetic Electromagnetic Counterpart All-sky Monitor(GECAM)is dedicated to detecting gravitational wave gamma-ray bursts.It is capable of all-sky monitoring over and discovering gamma-ray bursts and new radiation phenomena.GECAM consists of two microsatellites,each equipped with 8 charged particle detectors(CPDs)and 25 gamma-ray detectors(GRDs).Purpose The CPD is used to measure charged particles in the space environment,monitor energy and flow intensity changes,and identify between gamma-ray bursts and space charged particle events in conjunction with GRD.Methods CPD uses plastic scintillator as the sensitive material for detection,silicon photomultiplier array as the optically readable device,and the inlaid Am-241 radioactive source as the onboard calibration means.Conclusion In this paper,we will present the working principle,physical design,functional implementation and preliminary performance test results of the CPD.As a result,the energy range of electron,gamma-ray detection efficiency and dead time are tested to be better than the indexes required through the ground calibration experiment.
基金The authors would like to thank all colleagues for helpful suggestions and comments.This study was supported by the National Natural Science Foundation of China(Grant No.11803039 and 12173038)the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA 15360100 and XDA 15360102).
文摘Background The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor(GECAM)consists of 2 microsatellites,each of which contains 25 GRD(LaBr3)detectors and 8 CPD(plastic scintillator)detectors.Method silicon photomultiplier(SiPM)array is used to read each detector.The output signal of these detectors with SiPM array is very special and challenging to readout.In this study,a novel data acquisition(DAQ)algorithm for these detectors is designed and implemented,and the content of the output event packet is defined.Result and Conclusion The performances,including the event acquisition efficiency of this DAQ algorithm,are extensively verified through experimental tests.From the on-ground and in-flight tests,this algorithm has excellent performance despite the very limited resources and short development time of GECAM mission.
基金This research was supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDBSSW-SLH012)the National Natural Science Foundation of China(11775251,11775252)the strategic leading science and technology program of Chinese Academy of Sciences(XDA 15360100,XDA 15360102).
文摘Purpose The discovery of gravitational waves and gamma-ray bursts heralds the era of multi-messenger astronomy.With the adoption of two small satellites to achieve the all-sky monitoring of gamma-ray bursts,the gravitational wave highenergy electromagnetic counterpart all-sky monitor(GECAM)possesses a quasi-real-time early warning ability and plays an important role in positioning the sources of gravitational waves and in subsequent observations.Each satellite of GECAM was fitted with 253-inch-diameter gamma-ray detectors(GRD),covering an energy range of 8–2 MeV.GRDs have adopted silicon photomultiplier tubes(SiPM)in lieu of photomultiplier tubes(PMT)to adapt to the dimensional limitations of micro-satellites.Methods A unique 3-inch circular SiPM array was designed.In this design,646×6 mm chips were arranged evenly in a circular manner with the seams filled with reflecting films,thus achieving satisfactory uniformity of light collection.The integrated pre-amplifier circuit on the back of the SiPM array adopted two-level grouping and summing;further,it achieved a satisfactory signal-to-noise ratio.Two high-gain and low-gain channels were adopted to achieve a large dynamic range,and two independent power supply units were used,where each unit can be closed separately,thus improving reliability.Results Performance studies show that this SiPM array meets the requirements of GECAM.Conclusion A 3-inch SiPM array have been developed that uses grouped summation,reflective films,a circular arrangement,two groups of independent power supplies,high-and low-gain signals,differential signal output technologies,etc.This solution can be used not only for GECAM,but also as a general solution for SiPM-based scintillation detectors.
基金Supported in part by National Key R&D Program of China(Grant Nos.2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(Grant Nos.11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(Grant No.U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(Grant No.758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(Grant No.894790)German Research Foundation DFG(Grant No.443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(Grant No.DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant No.B16F640076)Olle Engkvist Foundation(Grant No.200-0605)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(Grant No.160355)The Royal Society,UK(Grant Nos.DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(Grant No.DE-FG02-05ER41374)。
文摘We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.
基金This research is supported by the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDA15360102.
文摘Background The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)satellite developed a SiPM-based gamma-ray detector to monitor the gravitational wave-related GRBs and guide subsequent observations in other wavelengths of EM.Purpose As all the available SiPM devices belong to commercial grade,quality assurance tests need to be performed in accordance with the aerospace specifcations.Methods In the SiPM application of GECAM,quality assurance experiments were conducted.The mechanism of the failure of SiPM devices was analyzed during the development process.Result Based on the quality assurance test results,the fnal pass rate of SiPM array was 95%.Based on the failure analysis,it was found that a piece of SiPM had a leakage channel after longtime operation due to device defects.Conclusion According to the accumulated experience,in the reliability test of SiPM,it is necessary to pay special attention to test the impedance of each pin of SiPM to ground and confrm that the power switch state of SiPM is controllable.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11975011,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+20 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076STFC)(United Kingdom)Suranaree University of Technology(SUT)Thailand Science Research and Innovation(TSRI)National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374)。
文摘Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).