The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled m...The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave-seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.展开更多
The authors investigate the stability of a steady ideal plane flow in an arbitrary domain in terms of the L^2 norm of the vorticity. Linear stability implies nonlinear instability provided the growth rate of the line...The authors investigate the stability of a steady ideal plane flow in an arbitrary domain in terms of the L^2 norm of the vorticity. Linear stability implies nonlinear instability provided the growth rate of the linearized system exceeds the Liapunov exponent of the flow. In contrast,a maximizer of the entropy subject to constant energy and mass is stable. This implies the stability of certain solutions of the mean field equation.展开更多
Using the transfer matrix method,spin-and valley-dependent electron transport properties modulated by the velocity barrier were studied in the normal/ferromagnetic/normal monolayer MoS2 quantum structure.Based on Snel...Using the transfer matrix method,spin-and valley-dependent electron transport properties modulated by the velocity barrier were studied in the normal/ferromagnetic/normal monolayer MoS2 quantum structure.Based on Snell’s Law in optics,we define the velocity barrier asξ=v2/v1 by changing the Fermi velocity of the intermediate ferromagnetic region to obtain a deflection condition during the electron transport process in the structure.The results show that both the magnitude and the direction of spin-and valley-dependent electron polarization can be regulated by the velocity barrier.−100%polarization of spin-and valley-dependent electron can be achieved forξ>1,while 100%polarization can be obtained forξ<1.Furthermore,it is determined that perfect spin and valley transport always occur at a large incident angle.In addition,the spin-and valley-dependent electron transport considerably depends on the length kFL and the gate voltage U(x)of the intermediate ferromagnetic region.These findings provide an effective method for designing novel spin and valley electronic devices.展开更多
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by the National Natural Science Foundation of China(41176073)
文摘The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave-seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.
文摘The authors investigate the stability of a steady ideal plane flow in an arbitrary domain in terms of the L^2 norm of the vorticity. Linear stability implies nonlinear instability provided the growth rate of the linearized system exceeds the Liapunov exponent of the flow. In contrast,a maximizer of the entropy subject to constant energy and mass is stable. This implies the stability of certain solutions of the mean field equation.
基金This work was supported by NSFC under grants No.11804236,the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under grants No.KM201810028005Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physics under grants No.KF201806.
文摘Using the transfer matrix method,spin-and valley-dependent electron transport properties modulated by the velocity barrier were studied in the normal/ferromagnetic/normal monolayer MoS2 quantum structure.Based on Snell’s Law in optics,we define the velocity barrier asξ=v2/v1 by changing the Fermi velocity of the intermediate ferromagnetic region to obtain a deflection condition during the electron transport process in the structure.The results show that both the magnitude and the direction of spin-and valley-dependent electron polarization can be regulated by the velocity barrier.−100%polarization of spin-and valley-dependent electron can be achieved forξ>1,while 100%polarization can be obtained forξ<1.Furthermore,it is determined that perfect spin and valley transport always occur at a large incident angle.In addition,the spin-and valley-dependent electron transport considerably depends on the length kFL and the gate voltage U(x)of the intermediate ferromagnetic region.These findings provide an effective method for designing novel spin and valley electronic devices.